
OCAML FROM THE VERY BEGINNING

In OCaml from the Very Beginning John Whitington takes a no-prerequisites approach
to teaching a modern general-purpose programming language. Each small, self-
contained chapter introduces a new topic, building until the reader can write quite
substantial programs. There are plenty of questions and, crucially, worked answers
and hints.

OCaml from the Very Beginning will appeal both to new programmers, and
experienced programmers eager to explore functional languages such as OCaml. It
is suitable both for formal use within an undergraduate or graduate curriculum,
and for the interested amateur.

JOHN WHITINGTON founded a software company which uses OCaml extensively.
He teaches functional programming to students of Computer Science at the
University of Cambridge.

OCAML
from the very beginning

John Whitington

C O H E R E N T P R E S S

C O H E R E N T P R E S S
Cambridge

Published in the United Kingdom by Coherent Press, Cambridge

© Coherent Press 2013

This publication is in copyright. Subject to statutory
exception no reproduction of any part may take place

without the written permission of Coherent Press.

First published June 2013
Reprinted with corrections October 2013

Reprinted 2014, 2015, 2016

A catalogue record for this book is available from the British Library

ISBN 978-0-9576711-0-2 Paperback

by the same author

PDF Explained (O’Reilly, 2012)

More OCaml: Algorithms, Methods & Diversions (Coherent, 2014)

A Machine Made this Book: Ten Sketches of Computer Science (Coherent, 2016)

Contents

Getting Ready ix

1 Starting Off 1

2 Names and Functions 9

Note on Notation 17

3 Case by Case 19

4 Making Lists 25

Two Different Ways of Thinking 35

5 Sorting Things 37

Loading a Program from a File 45

6 Functions upon Functions upon Functions 47

7 When Things Go Wrong 55

8 Looking Things Up 61

9 More with Functions 67

10 New Kinds of Data 73

11 Growing Trees 81

12 In and Out 89

13 Putting Things in Boxes 99

14 The Other Numbers 111

15 The OCaml Standard Library 117

16 Building Bigger Programs 123

Answers to Questions 133

Hints for Questions 179

Coping with Errors 187

Index 191

v

Preface

This book is based on the Author’s experience of teaching programming to students in the University of
Cambridge supervisions system. In particular, working with students for the first-year undergraduate
course “Foundations of Computer Science”, based on Standard ML and lectured for many years by
Lawrence C. Paulson.

An interesting aspect of supervising students from a wide range of backgrounds (some with no
previous experience at all taking Computer Science as an additional subject within the Cambridge Natural
Sciences curriculum, and some with a great deal of programming experience already) is the level playing
field which the ML family of languages (like OCaml) provide. Sometimes, those students with least prior
programming experience perform the best.

I have tried to write a book which has no prerequisites – and with which any intelligent undergraduate
ought to be able to cope, whilst trying to be concise enough that someone coming from another language
might not be too annoyed by the tone.

Special note to those who have already written programs

When I was a boy, our class was using a word processor for the first time. I wanted a title for my story, so I
typed it on the first line and then, placing the cursor at the beginning, held down the space bar until the
title was roughly in the middle. My friend taught me how to use the centring function, but it seemed more
complicated to me, and I stuck with the familiar way – after all, it worked. Later on, of course, when I had
more confidence and experience, I realized he had been right.

When starting a language which is fundamentally different from those you have seen before, it can be
difficult to see the advantages, and to try to think of every concept in terms of the old language. I would
urge you to consider the possibility that, at the moment, you might be the boy holding down the space bar.

Acknowledgments

Inevitably, the approach here owes a debt to that taken by Lawrence C. Paulson, both in his lecture notes
and in his book “ML for the Working Programmer” (Cambridge University Press, 1996). Question 3 in
Chapter 11 is inspired by an examination question of his. I was taught Standard ML by Professor Paulson
and Andrei Serjantov in Autumn 2000. Mark Shinwell has been a constant source of helpful discussion.
Robin Walker and latterly Andrew Rice have arranged the supervisions system at Queens’ College within
which I have taught since 2004. I am grateful to the developers of OCaml who have provided such a
pleasant environment in which to write programs. Helpful comments on an earlier draft were provided by
Martin DeMello, Damien Doligez, Arthur Guillon, Zhi Han, Robert Jakob, Xavier Leroy, Florent Monnier,
and Benjamin Pierce. And, of course, I thank all my students, some of whom are now working with
OCaml for a living.

vii

Getting Ready

This book is about teaching the computer to do new things by writing computer programs. Just as there
are different languages for humans to speak to one another, there are different programming languages for
humans to speak to computers.

We are going to be using a programming language called OCaml. It might already be on your
computer, or you may have to find it on the internet and install it yourself. You will know that you have
OCaml working when you see something like this:

OCaml

#

OCaml is waiting for us to type something. Try typing 1 space + space 2 ; ; followed by the Enter
key. You should see this:

OCaml

1 + 2;;
- : int = 3

OCaml is telling us the result of the calculation. To leave OCaml, give the exit 0 command, again ending
with ;; to tell OCaml we have finished typing:

OCaml

exit 0;;

You should find yourself back where you were before. If you make a mistake when typing, you can press
Ctrl-C (hold down the Ctrl key and tap the c key). This will allow you to start again:

OCaml

1 + 3^CInterrupted
1 + 2;;
- : int = 3

We are ready to begin.

ix

Chapter 1

Starting Off

We will cover a fair amount of material in this chapter and its questions, since we will need a solid base on
which to build. You should read this with a computer running OCaml in front of you.

Consider first the mathematical expression 1 + 2× 3. What is the result? How did you work it out?
We might show the process like this:

1 + 2× 3

=⇒ 1 + 6

=⇒ 7

How did we know to multiply 2 by 3 first, instead of adding 1 and 2? How did we know when to stop?
Let us underline the part of the expression which is dealt with at each step:

1 + 2× 3

=⇒ 1 + 6

=⇒ 7

We chose which part of the expression to deal with each time using a familiar mathematical rule –
multiplication is done before addition. We stopped when the expression could not be processed any
further.

Computer programs in OCaml are just like these expressions. In order to give you an answer, the
computer needs to know all the rules you know about how to process the expression correctly. In fact,
1 + 2× 3 is a valid OCaml expression as well as a valid mathematical one, but we must write * instead of
×, since there is no × key on the keyboard:

OCaml

1 + 2 * 3;;
- : int = 7

Here, # is OCaml prompting us to write an expression, and 1 + 2 * 3;; is what we typed (the semicolons
followed by the Enter key tell OCaml we have finished our expression). OCaml responds with the answer
7. OCaml also prints int, which tells us that the answer is a whole number, or integer.

Let us look at our example expression some more. There are two operators: + and ×. There are three
operands: 1, 2, and 3. When we wrote it down, and when we typed it into OCaml, we put spaces between

1

2 Chapter 1. Starting Off

the operators and operands for readability. How does OCaml process it? Firstly, the text we wrote must be
split up into its basic parts: 1, +, 2, *, and 3. OCaml then looks at the order and kind of the operators and
operands, and decides how to parenthesize the expression: (1 + (2× 3)). Now, evaluating the expression
just requires dealing with each parenthesized section, starting with the innermost, and stopping when
there are no parentheses left:

(1 + (2× 3))

=⇒ (1 + 6)

=⇒ 7

OCaml knows that × is to be done before +, and parenthesizes the expression appropriately. We say the ×
operator has higher precedence than the + operator.

An expression is any valid OCaml program. To produce an answer, OCaml evaluates the expression,
yielding a special kind of expression, a value. In our previous example, 1 + 2 × 3, 1 + 6, and 7 were all
expressions, but only 7 was a value.

Each expression (and so each value) has a type. The type of 7 is int (it is an integer). The types of the
expressions 1 + 6 and 1 + 2 × 3 are also int, since they will evaluate to a value of type int. The type of
any expression may be worked out by considering the types of its sub-expressions, and how they are
combined to form the expression. For example, 1 + 6 has type int because 1 is an int, 6 is an int, and the +
operator takes two integers and gives another one (their sum). Here are the mathematical operators on
integers:

Operator Description

a + b addition
a - b subtract b from a
a * b multiplication
a / b divide a by b, returning the whole part
a mod b divide a by b, returning the remainder

The mod, *, and / operators have higher precedence than the + and - operators. For any operator ⊕ above,
the expression a⊕ b⊕ c is equivalent to (a⊕ b)⊕ c rather than a⊕ (b⊕ c) (we say the operators are left
associative). We sometimes write down the type of an expression after a colon when working on paper, to
keep it in mind:

5 * -2 : int

(negative numbers are written with - before them). Of course, there are many more types than just int.
Sometimes, instead of numbers, we would like to talk about truth: either something is true or it is not. For
this we use the type bool which represents boolean values, named after the English mathematician George
Boole (1815–1864) who pioneered their use. There are just two things of type bool:

true
false

How can we use these? One way is to use one of the comparison operators, which are used for comparing
values to one another. For example:

OCaml

Chapter 1. Starting Off 3

99 > 100;;
- : bool = false
4 + 3 + 2 + 1 = 10;;
- : bool = true

Here are all the comparison operators:

Operator Description

a = b true if a and b are equal
a < b true if a is less than b
a <= b true if a is less than or equal to b
a > b true if a is more than b
a >= b true if a is more than or equal to b
a <> b true if a is not equal to b

Notice that if we try to use operators with types for which they are not intended, OCaml will not accept
the program at all, showing us where our mistake is by underlining it:

OCaml

1 + true;;
Error: This expression has type bool but an expression was expected of type

int

You can find more information about error messages in OCaml in the appendix “Coping with Errors” at
the back of this book.

There are two operators for combining boolean values (for instance, those resulting from using the
comparison operators). The expression a && b evaluates to true only if a and b both evaluate to true.
The expression a || b evaluates to true only if a evaluates to true, b evaluates to true, or both do. The
&& operator (pronounced “and”) is of higher precedence than the || operator (pronounced “or”), so a &&
b || c is the same as (a && b) || c.

A third type we shall be using is char which holds a single character, such as ‘a’ or ‘?’. We write these in
single quotation marks:

OCaml

'c';;
- : char = 'c'

So far we have looked only at operators like +, mod, and = which look like familiar mathematical ones.
But many constructs in programming languages look a little different. For example, to choose a course of
evaluation based on some test, we use the if . . . then . . . else construct:

OCaml

if 100 > 99 then 0 else 1;;
- : int = 0

4 Chapter 1. Starting Off

The expression between if and then (in our example 100 > 99) must have type bool – it evaluates to
either true or false. The types of the expression to choose if true and the expression to choose if false
must be the same as one another – here they are both of type int. The whole expression evaluates to the
same type – int – because either the then part or the else part is chosen to be the result of evaluating the
whole expression:

if

bool︷ ︸︸ ︷
100 > 99 then

int︷︸︸︷
0 else

int︷︸︸︷
1︸ ︷︷ ︸

int

We have covered a lot in this chapter, but we need all these basic tools before we can write interesting
programs. Make sure you work through the questions on paper, on the computer, or both, before moving
on. Hints and answers are at the back of the book.

Chapter 1. Starting Off 5

Questions

1. What are the types of the following expressions and what do they evaluate to, and why?

17

1 + 2 * 3 + 4

800 / 80 / 8

400 > 200

1 <> 1

true || false

true && false

if true then false else true

'%'

'a' + 'b'

2. Consider the evaluations of the expressions 1 + 2 mod 3, (1 + 2) mod 3, and 1 + (2 mod 3). What
can you conclude about the + and mod operators?

3. A programmer writes 1+2 * 3+4. What does this evaluate to? What advice would you give him?

4. The range of numbers available is limited. There are two special numbers: min_int and max_int.
What are their values on your computer? What happens when you evaluate the expressions max_int
+ 1 and min_int - 1?

5. What happens when you try to evaluate the expression 1 / 0? Why?

6. Can you discover what the mod operator does when one or both of the operands are negative? What
about if the first operand is zero? What if the second is zero?

7. Why not just use, for example, the integer 0 to represent false and the integer 1 for true? Why have
a separate bool type at all?

8. What is the effect of the comparison operators like < and > on alphabetic values of type char? For
example, what does 'p' < 'q' evaluate to? What is the effect of the comparison operators on the
booleans, true and false?

So Far

1Integers min_int . . . -3 -2 -1 0 1 2 3 . . . max_int of
type int. Booleans true and false of type bool. Char-

acters of type char like 'X' and '!'.

Mathematical operators + - * / mod which take two inte-
gers and give another.

Operators = < <= > >= <> which compare two values
and evaluate to either true or false.

The conditional if expression1 then expression2 else ex-
pression3, where expresssion1 has type bool and expression2
and expression3 have the same type as one another.

The boolean operators && and || which allow us to build
compound boolean expressions.

Chapter 2

Names and Functions

So far we have built only tiny toy programs. To build bigger ones, we need to be able to name things so as
to refer to them later. We also need to write expressions whose result depends upon one or more other
things.

Before, if we wished to use a sub-expression twice or more in a single expression, we had to type it
multiple times:

OCaml

200 * 200 * 200;;
- : int = 8000000

Instead, we can define our own name to stand for the result of evaluating an expression, and then use the
name as we please:

OCaml

let x = 200;;
val x : int = 200
x * x * x;;
- : int = 8000000

To write this all in a single expression, we can use the let . . . = . . . in construct:

OCaml

let x = 200 in x * x * x;;
- : int = 8000000
let a = 500 in (let b = a * a in a + b);;
- : int = 250500

We can also make a function, whose value depends upon some input (we call this input an argument – we
will be using the word “input” later in the book to mean something different):

OCaml

9

10 Chapter 2. Names and Functions

let cube x = x * x * x;;
val cube : int -> int = <fun>
cube 200;;
- : int = 8000000

We chose cube for the name of the function and x for the name of its argument. When we typed the
function in, OCaml replied by telling us that its type is int → int. This means it is a function which takes
an integer as its argument, and, when given that argument, evaluates to an integer. To use the function,
we just write its name followed by a suitable argument. In our example, we calculated 2003 by giving the
cube function 200 as its argument.

The cube function has type int → int, we gave it an integer 200, and so the result is another integer.
Thus, the type of the expression cube 200 is int – remember that the type of any expression is the type of
the thing it will evaluate to, and cube 200 evaluates to 8000000, an integer. In diagram form:

int → int︷ ︸︸ ︷
cube

int︷ ︸︸ ︷
200︸ ︷︷ ︸

int

If we try an argument of the wrong type, the program will be rejected:

OCaml

let cube x = x * x * x;;
val cube : int -> int = <fun>
cube false;;
Error: This expression has type bool but an expression was expected of type

int

Here is a function which determines if an integer is negative:

OCaml

let neg x = if x < 0 then true else false;;
val neg : int -> bool = <fun>
neg (-30);; we add parentheses to distinguish from neg - 30
- : bool = true

But, of course, this is equivalent to just writing

OCaml

let neg x = x < 0;;
val neg : int -> bool = <fun>
neg (-30);;
- : bool = true

because x < 0 will evaluate to the appropriate boolean value on its own – true if x < 0 and false
otherwise. Here is another function, this time of type char → bool. It determines if a given character is a
vowel or not:

Chapter 2. Names and Functions 11

OCaml

let isvowel c =
c = 'a' || c = 'e' || c = 'i' || c = 'o' || c = 'u';;

val isvowel : char -> bool = <fun>
isvowel ’x’;;
- : bool = false

Notice that we typed the function over two lines. This can be done by pressing the Enter key in between
lines. OCaml knows that we are finished when we type ;; followed by Enter as usual. Notice also that we
pressed space a few times so that the second line appeared a little to the right of the first. This is known as
indentation and does not affect the meaning of the program at all – it is just for readability.

There can be more than one argument to a function. For example, here is a function which checks if
two numbers add up to ten:

OCaml

let addtoten a b =
a + b = 10;;

val addtoten : int -> int -> bool = <fun>
addtoten 6 4;;
- : bool = true

The type is int → int → bool because the arguments are both integers, and the result is a boolean. We
use the function in the same way as before, but writing two integers this time, one for each argument the
function expects.

A recursive function is one which uses itself. Consider calculating the factorial of a given number – the
factorial of 4 (written 4! in mathematics), for example, is 4 × 3 × 2 × 1. Here is a recursive function to
calculate the factorial. Note that it uses itself in its own definition.

OCaml

let rec factorial a =
if a = 1 then 1 else a * factorial (a - 1);;

val factorial : int -> int = <fun>
factorial 4;;
- : int = 24

We used let rec instead of let to indicate a recursive function. How does the evaluation of factorial 4
proceed?

factorial 4

=⇒ 4 * factorial 3

=⇒ 4 * (3 * factorial 2)

=⇒ 4 * (3 * (2 * factorial 1))

=⇒ 4 * (3 * (2 * 1))

=⇒ 4 * (3 * 2)

=⇒ 4 * 6

=⇒ 24

12 Chapter 2. Names and Functions

For the first three steps, the else part of the conditional expression is chosen, because the argument a is
greater than one. When the argument is equal to one, we do not use factorial again, but just evaluate to
one. The expression built up of all the multiplications is then evaluated until a value is reached: this is the
result of the whole evaluation. It is sometimes possible for a recursive function never to finish – what if
we try to evaluate factorial (-1)?

factorial (-1)

=⇒ -1 * factorial (-2)

=⇒ -1 * (-2 * factorial (-3))

=⇒ -1 * (-2 * (-3 * factorial (-4)))

...
...

The expression keeps expanding, and the recursion keeps going. Helpfully, OCaml tells us what is going
on:

OCaml

let rec factorial a =
if a = 1 then 1 else a * factorial (a - 1);;

val factorial : int -> int = <fun>
factorial (-1);;
Stack overflow during evaluation (looping recursion?).

This is an example of an error OCaml cannot find by merely looking at the program – it can only be
detected during evaluation. Later in the book, we will see how to prevent people who are using our
functions from making such mistakes.

One of the oldest methods for solving a problem (called algorithms) still in common use is Euclid’s
algorithm for calculating the greatest common divisor of two numbers (that is, given two positive integers
a and b, finding the biggest positive integer c such that neither a/c nor b/c have a remainder). Euclid was
a Greek mathematician who lived about three centuries before Christ. Euclid’s algorithm is simple to write
as a function with two arguments:

OCaml

let rec gcd a b =
if b = 0 then a else gcd b (a mod b);;

val gcd : int -> int -> int = <fun>
gcd 64000 3456;;
- : int = 128

Here is the evaluation:

gcd 64000 3456

=⇒ gcd 3456 1792

=⇒ gcd 1792 1664

=⇒ gcd 1664 128

=⇒ gcd 128 0

=⇒ 128

Chapter 2. Names and Functions 13

Finally, here is a simple function on boolean values. In the previous chapter, we looked at the && and ||
operators which are built in to OCaml. The other important boolean operator is the not function, which
returns the boolean complement (opposite) of its argument – true if the argument is false, and vice versa.
This is also built in, but it is easy enough to define ourselves, as a function of type bool → bool.

OCaml

let not x =
if x then false else true;;

val not : bool -> bool = <fun>
not true;;
- : bool = false

Almost every program we write will involve functions such as these, and many larger ones too. In fact,
languages like OCaml are often called functional languages.

14 Chapter 2. Names and Functions

Questions

1. Write a function which multiplies a given number by ten. What is its type?

2. Write a function which returns true if both of its arguments are non-zero, and false otherwise.
What is the type of your function?

3. Write a recursive function which, given a number n, calculates the sum 1 + 2 + 3 + . . .+ n. What is
its type?

4. Write a function power x n which raises x to the power n. Give its type.

5. Write a function isconsonant which, given a lower-case character in the range 'a'. . .'z', deter-
mines if it is a consonant.

6. What is the result of the expression let x = 1 in let x = 2 in x + x ?

7. Can you suggest a way of preventing the non-termination of the factorial function in the case of
a zero or negative argument?

So Far

1Integers min_int . . . -3 -2 -1 0 1 2 3 . . . max_int of
type int. Booleans true and false of type bool. Char-

acters of type char like 'X' and '!'.

Mathematical operators + - * / mod which take two inte-
gers and give another.

Operators = < <= > >= <> which compare two values
and evaluate to either true or false.

The conditional if expression1 then expression2 else ex-
pression3, where expresssion1 has type bool and expression2
and expression3 have the same type as one another.

The boolean operators && and || which allow us to build
compound boolean expressions.

2 Assigning a name to the result of evaluating an expres-
sion using the let name = expression construct. Building

compound expressions using let name1 = expression1 in
let name2 = expression2 in . . .

Functions, introduced by let name argument1 argument2
. . . = expression. These have type α→ β, α→ β → γ etc.
for some types α, β, γ etc.

Recursive functions, which are introduced in the same
way, but using let rec instead of let.

Note on Notation

From now on, instead of showing the actual OCaml session. . .

OCaml

let rec factorial a =
if a = 1 then 1 else a * factorial (a - 1);;

val factorial : int -> int = <fun>

. . . we will usually just show the program in a box, together with its type:

factorial : int → int

let rec factorial a =
if a = 1 then 1 else a * factorial (a - 1)

If you prefer to compose your programs in a text editing program, and copy-and-paste them into OCaml,
you can do that too. Just make sure you end with ;; to let OCaml know you have finished entering the
program.

Later on, when we write larger programs, we will see how to use OCaml to load our programs from
external files.

17

Chapter 3

Case by Case

In the previous chapter, we used the conditional expression if . . . then . . . else to define functions whose
results depend on their arguments. For some of them we had to nest the conditional expressions one
inside another. Programs like this are not terribly easy to read, and expand quickly in size and complexity
as the number of cases increases.

OCaml has a nicer way of expressing choices – pattern matching. For example, recall our factorial
function:

factorial : int → int

let rec factorial a =
if a = 1 then 1 else a * factorial (a - 1)

We can rewrite this using pattern matching:

factorial : int → int

let rec factorial a =
match a with

1 -> 1
| _ -> a * factorial (a - 1)

We can read this as “See if a matches the pattern 1. If it does, just return 1. If not, see if it matches the
pattern _. If it does, the result is a * factorial (a - 1).” The pattern _ is special – it matches anything.
Remember our isvowel function from the previous chapter?

isvowel : char → bool

let isvowel c =
c = 'a' || c = 'e' || c = 'i' || c = 'o' || c = 'u'

19

20 Chapter 3. Case by Case

Here is how to write it using pattern matching:

isvowel : char → bool

let isvowel c =
match c with
'a' -> true

| 'e' -> true
| 'i' -> true
| 'o' -> true
| 'u' -> true
| _ -> false

If we miss out one or more cases, OCaml will warn us:

OCaml

let isvowel c =
match c with

'a' -> true
| 'e' -> true
| 'i' -> true
| 'o' -> true
| 'u' -> true;;

Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
'b'
val isvowel : char -> bool

OCaml does not reject the program, because there may be legitimate reasons to miss cases out, but for now
we will make sure all our pattern matches are complete. Notice that we had to repeat true five times. This
would be awkward if the expression to be calculated was more complicated. We can combine patterns like
this:

isvowel : char → bool

let isvowel c =
match c with
'a' | 'e' | 'i' | 'o' | 'u' -> true

| _ -> false

Finally, let us rewrite Euclid’s Algorithm from the previous chapter:

gcd : int → int → int

let rec gcd a b =
if b = 0 then a else gcd b (a mod b)

Chapter 3. Case by Case 21

Now in pattern matching style:

gcd : int → int → int

let rec gcd a b =
match b with

0 -> a
| _ -> gcd b (a mod b)

The type of a whole match . . . with . . . expression is determined by the types of the expressions on the
right hand side of each -> arrow, all of which must be alike:

match b with 0 ->

int︷︸︸︷
a | _ ->

int︷ ︸︸ ︷
gcd b (a mod b)︸ ︷︷ ︸

int

We use pattern matching whenever it is easier to read and understand than if . . . then . . . else expres-
sions.

22 Chapter 3. Case by Case

Questions

1. Rewrite the not function from the previous chapter in pattern matching style.

2. Use pattern matching to write a recursive function which, given a positive integer n, returns the
sum of all the integers from 1 to n.

3. Use pattern matching to write a function which, given two numbers x and n, computes xn.

4. For each of the previous three questions, comment on whether you think it is easier to read the
function with or without pattern matching. How might you expect this to change if the functions
were much larger?

5. What does match 1 + 1 with 2 -> match 2 + 2 with 3 -> 4 | 4 -> 5 evaluate to?

6. There is a special pattern x..y to denote continuous ranges of characters, for example 'a'..'z'
will match all lowercase letters. Write functions islower and isupper, each of type char → bool, to
decide on the case of a given letter.

So Far

1Integers min_int . . . -3 -2 -1 0 1 2 3 . . . max_int of
type int. Booleans true and false of type bool. Char-

acters of type char like 'X' and '!'.

Mathematical operators + - * / mod which take two inte-
gers and give another.

Operators = < <= > >= <> which compare two values
and evaluate to either true or false.

The conditional if expression1 then expression2 else ex-
pression3, where expresssion1 has type bool and expression2
and expression3 have the same type as one another.

The boolean operators && and || which allow us to build
compound boolean expressions.

2 Assigning a name to the result of evaluating an expres-
sion using the let name = expression construct. Building

compound expressions using let name1 = expression1 in
let name2 = expression2 in . . .

Functions, introduced by let name argument1 argument2
. . . = expression. These have type α→ β, α→ β → γ etc.
for some types α, β, γ etc.

Recursive functions, which are introduced in the same
way, but using let rec instead of let.

3 Matching patterns using match expression1 with pat-
tern1 | . . . -> expression2 | pattern2 | . . . -> expression3

|. . . The expressions expression2, expression3 etc. must have
the same type as one another, and this is the type of the
whole match . . . with expression.

Chapter 4

Making Lists

A list is a collection of elements. Here is a list of three integers:

[1; 2; 3]

We write a list between square brackets [and], separating the elements with semicolons. The list above
has type int list, because it is a list of integers. All elements of the list must have the same type. The
elements in the list are ordered (in other words, [1; 2; 3] and [2; 3; 1] are not the same list).

The first element is called the head, and the rest are collectively called the tail. In our example, the head
is the integer 1 and the tail is the list [2; 3]. So you can see that the tail has the same type as the whole
list. Here is a list with no elements (called “the empty list” or sometimes “nil”):

[]

It has neither a head nor a tail. Here is a list with just a single element:

[5]

Its head is the integer 5 and its tail is the empty list []. So every non-empty list has both a head and a tail.
Lists may contain elements of any type: integers, booleans, functions, even other lists. For example, here is
a list containing elements of type bool:

[false; true; false] : bool list

OCaml defines two operators for lists. The :: operator (pronounced “cons”) is used to add a single
element to the front of an existing list:

false :: [true; false]

=⇒ [false; true; false]

The cons operation is completed in a constant amount of time, regardless of the length of the list. The @
operator (pronounced “append”) is used to combine two lists together:

[1; 2] @ [3; 4; 5]

=⇒ [1; 2; 3; 4; 5]

25

26 Chapter 4. Making Lists

This takes time proportional to the length of the list on the left hand side of the @ operator (that is, a list of
length 100 will take roughly twice as long as one of length 50). We will see why soon.

Now, how do we write functions using lists? We can use pattern matching as usual, with some new
types of pattern. For example, here’s a function which tells us if a list is empty:

isnil : α list → bool

let isnil l =
match l with
[] -> true the list is empty

| _ -> false it has at least one element

The argument has type α list (which OCaml prints on the screen as ’a list) because this function does
not inspect the individual elements of the list, it just checks if the list is empty. And so, this function can
operate over any type of list. The greek letters α, β, γ etc. stand for any type. If two types are represented
by the same greek letter they must have the same type. If they are not, they may have the same type, but
do not have to. Functions like this are known as polymorphic. We can also use :: in our patterns, this time
using it to deconstruct rather than construct the list:

length : α list → int

let rec length l =
match l with

[] -> 0 the list has zero elements (the “base case”)
| h::t -> 1 + length t h is the head, t the tail

Here is how the evaluation proceeds:

length [5; 5; 5]

=⇒ 1 + length [5; 5]

=⇒ 1 + (1 + length [5])

=⇒ 1 + (1 + (1 + length [])) base case
=⇒ 1 + (1 + (1 + 0))
∗

=⇒ 3 (∗=⇒ means we are not showing all the steps)

This works by recursion over the list, then addition of all the resultant 1s. It takes time proportional to
the length of the list. Can you see why? It also takes space proportional to the length of the list, because
of the intermediate expression 1 + (1 + (1 + ... which is built up before any of the + operations are
evaluated – this expression must be stored somewhere whilst it is being processed. Since h is not used in
the expression 1 + length t, this function is also polymorphic. Indeed we can replace h in the pattern
with _ since there is no use giving a name to something we are not going to refer to:

Chapter 4. Making Lists 27

length : α list → int

let rec length l =
match l with

[] -> 0 the list has zero elements
| _::t -> 1 + length t _ is the head, t the tail

A very similar function can be used to add a list of integers:

sum : int list → int

let rec sum l =
match l with

[] -> 0 the sum of no elements is zero
| h::t -> h + sum t otherwise, add the head to the sum of the tail

However, since we are actually using the individual list elements (by adding them up), this function is not
polymorphic – it operates over lists of type int list only. If we accidentally miss out a case, OCaml will
alert us, and give an example pattern which is not matched:

OCaml

let rec sum l =
match l with =

h::t -> h + sum t;;
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
[]
val sum : int list -> int = <fun>

There is a way to deal with the excessive space usage from the building up of a large intermediate
expression 1 + 1 + 1 + ... in our length function, at the cost of readability. We can “accumulate” the 1s
as we go along in an extra argument. At each recursive step, the accumulating argument is increased by
one. When we have finished, the total is returned:

length_inner : α list → int → int
length : α list → int

let rec length_inner l n =
match l with

[] -> n list is empty, return the accumulator
| h::t -> length_inner t (n + 1) add one to the accumulator, and carry on

let length l = length_inner l 0 give an initial accumulator of zero

28 Chapter 4. Making Lists

We wrapped it up in another function to make sure we do not call it with a bad initial value for the
accumulating argument. Here is an example evaluation:

length [5; 5; 5]

=⇒ length_inner [5; 5; 5] 0

=⇒ length_inner [5; 5] 1

=⇒ length_inner [5] 2

=⇒ length_inner [] 3 base case
=⇒ 3

Now, the space taken by the calculation does not relate in any way to the length of the list argument.
Recursive functions which do not build up a growing intermediate expression are known as tail recursive.
Functions can, of course, return lists too. Here is a function to return the list consisting of the first, third,
fifth and so on elements in a list:

odd_elements : α list → α list

let rec odd_elements l =
match l with
[] -> [] the list has zero elements

| [a] -> [a] the list has one element
| a::_::t -> a :: odd_elements t the list has more than one element

Consider the evaluation of odd_elements [2; 4; 2; 4; 2]:

odd_elements [2; 4; 2; 4; 2]

=⇒ 2 :: odd_elements [2; 4; 2]

=⇒ 2 :: 2 :: odd_elements [2]

=⇒ 2 :: 2 :: [2]
∗

=⇒ [2; 2; 2]

You might notice that the first two cases in the pattern match return exactly their argument. By reversing
the order, we can reduce this function to just two cases:

odd_elements : α list → α list

let rec odd_elements l =
match l with
a::_::t -> a :: odd_elements t there is something to skip over

| _ -> l there is nothing to skip over

We have seen how to use the @ (append) operator to concatenate two lists:

[1; 2] @ [3; 4; 5]

=⇒ [1; 2; 3; 4; 5]

Chapter 4. Making Lists 29

How might we implement list append ourselves, if it was not provided? Consider a function append a b.
If the list a is the empty list, the answer is simply b. But what if a is not empty? Then it has a head h and a
tail t. So we can start our result list with the head, and the rest of the result is just append t b.

append : α list → α list → α list

let rec append a b =
match a with

[] -> b
| h::t -> h :: append t b

Consider the evaluation of append [1; 2; 3] [4; 5; 6]:

append [1; 2; 3] [4; 5; 6]

=⇒ 1 :: append [2; 3] [4; 5; 6]

=⇒ 1 :: 2 :: append [3] [4; 5; 6]

=⇒ 1 :: 2 :: 3 :: append [] [4; 5; 6]

=⇒ 1 :: 2 :: 3 :: [4; 5; 6]
∗

=⇒ [1; 2; 3; 4; 5; 6]

This takes time proportional to the length of the first list – the second list need not be processed at all.
What about reversing a list? For example, we want rev [1; 2; 3; 4] to evaluate to [4; 3; 2; 1]. One
simple way is to reverse the tail of the list, and append the list just containing the head to the end of it:

rev : α list → α list

let rec rev l =
match l with

[] -> []
| h::t -> rev t @ [h]

Here’s how the evaluation proceeds:

rev [1; 2; 3; 4]

=⇒ rev [2; 3; 4] @ [1]

=⇒ rev [3; 4] @ [2] @ [1]

=⇒ rev [4] @ [3] @ [2] @ [1]

=⇒ rev [] @ [4] @ [3] @ [2] @ [1]

=⇒ [] @ [4] @ [3] @ [2] @ [1]
∗

=⇒ [4; 3; 2; 1]

This is a simple definition, but not very efficient – can you see why?
Two more useful functions for processing lists are take and drop which, given a number and a list,

either take or drop that many elements from the list:

30 Chapter 4. Making Lists

take : int → α list → α list
drop : int → α list → α list

let rec take n l =
if n = 0 then [] else
match l with
h::t -> h :: take (n - 1) t

let rec drop n l =
if n = 0 then l else
match l with
h::t -> drop (n - 1) t

For example, here’s the evaluation for take 2 [2; 4; 6; 8; 10]:

take 2 [2; 4; 6; 8; 10]

=⇒ 2 :: take 1 [4; 6; 8; 10]

=⇒ 2 :: 4 :: take 0 [6; 8; 10]

=⇒ 2 :: 4 :: []
∗

=⇒ [2; 4]

And for drop 2 [2; 4; 6; 8; 10]:

drop 2 [2; 4; 6; 8; 10]

drop 1 [4; 6; 8; 10]

=⇒ drop 0 [6; 8; 10]

=⇒ [6; 8; 10]

Note that these functions contain incomplete pattern matches – OCaml tells us so when we type them
in. The function fails if the arguments are not sensible – that is, when we are asked to take or drop more
elements than are in the argument list. Later on, we will see how to deal with that problem. Note also that
for any sensible value of n, including zero, take n l and drop n l split the list into two parts with no gap.
So drop and take often appear in pairs.

Lists can contain anything, so long as all elements are of the same type. So, of course, a list can contain
lists. Here’s a list of lists of integers:

[[1]; [2; 3]; [4; 5; 6]] : (int list) list We can also just write int list list

Each element of this list is of type int list. Within values of this type, it is important to distinguish the list
of lists containing no elements

[] : α list list

from the list of lists containing one element which is the empty list

[[]] : α list list

Chapter 4. Making Lists 31

Questions

1. Write a function evens which does the opposite to odds, returning the even numbered elements in a
list. For example, evens [2; 4; 2; 4; 2] should return [4; 4]. What is the type of your function?

2. Write a function count_true which counts the number of true elements in a list. For example,
count_true [true; false; true] should return 2. What is the type of your function? Can you
write a tail recursive version?

3. Write a function which, given a list, builds a palindrome from it. A palindrome is a list which
equals its own reverse. You can assume the existence of rev and @. Write another function which
determines if a list is a palindrome.

4. Write a function drop_last which returns all but the last element of a list. If the list is empty, it
should return the empty list. So, for example, drop_last [1; 2; 4; 8] should return [1; 2; 4].
What about a tail recursive version?

5. Write a function member of type α → α list → bool which returns true if an element exists in a list,
or false if not. For example, member 2 [1; 2; 3] should evaluate to true, but member 3 [1; 2]
should evaluate to false.

6. Use your member function to write a function make_set which, given a list, returns a list which
contains all the elements of the original list, but has no duplicate elements. For example, make_set
[1; 2; 3; 3; 1] might return [2; 3; 1]. What is the type of your function?

7. Can you explain why the rev function we defined is inefficient? How does the time it takes to run
relate to the size of its argument? Can you write a more efficient version using an accumulating
argument? What is its efficiency in terms of time taken and space used?

So Far

1Integers min_int . . . -3 -2 -1 0 1 2 3 . . . max_int of
type int. Booleans true and false of type bool. Char-

acters of type char like 'X' and '!'.

Mathematical operators + - * / mod which take two inte-
gers and give another.

Operators = < <= > >= <> which compare two values
and evaluate to either true or false.

The conditional if expression1 then expression2 else ex-
pression3, where expresssion1 has type bool and expression2
and expression3 have the same type as one another.

The boolean operators && and || which allow us to build
compound boolean expressions.

2 Assigning a name to the result of evaluating an expres-
sion using the let name = expression construct. Building

compound expressions using let name1 = expression1 in
let name2 = expression2 in . . .

Functions, introduced by let name argument1 argument2
. . . = expression. These have type α→ β, α→ β → γ etc.
for some types α, β, γ etc.

Recursive functions, which are introduced in the same
way, but using let rec instead of let.

3 Matching patterns using match expression1 with pat-
tern1 | . . . -> expression2 | pattern2 | . . . -> expression3

|. . . The expressions expression2, expression3 etc. must have
the same type as one another, and this is the type of the
whole match . . . with expression.

4 Lists, which are ordered collections of zero or more
elements of like type. They are written between square

brackets, with elements separated by semicolons e.g. [1;
2; 3; 4; 5]. If a list is non-empty, it has a head, which is
its first element, and a tail, which is the list composed of
the rest of the elements.

The :: “cons” operator, which adds an element to the front
of a list. The @ “append” operator, which concatenates two
lists together.

Lists and the :: “cons” symbol may be used for pattern
matching to distinguish lists of length zero, one, etc. and
with particular contents.

Two Different Ways of Thinking

Look again at our list appending function:

append : α list → α list → α list

let rec append a b =
match a with

[] -> b
| h::t -> h :: append t b

There are two ways to think about this computation. One way is to imagine the actions the computer
might take to calculate the result:

Look at the first list. If it is empty, return the second list. Otherwise, pull apart the first list, looking at
its head and tail. Make a recursive call to append the tail to the second list, and then cons the head onto
the result. Return this.

Alternatively, we can consider each match case to be an independent statement of truth, thinking the same
way about the whole function:

The empty list appended to another list is that list. Otherwise, the first list is non-empty, so it has a
head and a tail. Call them h and t. Clearly append (h :: t) b is equal to h :: append t b. Since
this reduces the problem size, progress is made.

It is very useful to be able to think in these two ways about functions you write, and to be able to swap
between them in the mind with ease.

35

Chapter 5

Sorting Things

Lists often need to be in sorted order. How might we write a function to sort a list of integers? Well, a
list with zero elements is already sorted. If we do not have an empty list, we must have a head and a tail.
What can we do with those? Well, we can sort the tail by a recursive call to our sort function. So, now we
have the head, and an already sorted list. Now, we just need to write a function to insert the head in an
already sorted list. We have reduced the problem to an easier one.

let rec sort l =
match l with

[] -> [] an empty list is already sorted
| h::t -> insert h (sort t) insert the head into the sorted tail

Now we just need to write the insert function. This takes an element and an already-sorted list, and
returns the list with the element inserted in the right place:

let rec insert x l =
match l with

[] -> [x] the simple case – just put x in
| h::t -> otherwise we have a head and a tail

if x <= h if we are at an appropriate point
then x :: h :: t just put x here
else h :: insert x t otherwise, keep h and carry on

Consider the evaluation of insert 3 [1; 1; 2; 3; 5; 9]:

insert 3 [1; 1; 2; 3; 5; 9]

=⇒ 1 :: insert 3 [1; 2; 3; 5; 9]

=⇒ 1 :: 1 :: insert 3 [2; 3; 5; 9]

=⇒ 1 :: 1 :: 2 :: insert 3 [3; 5; 9]

=⇒ 1 :: 1 :: 2 :: 3 :: 3 :: [5; 9]
∗

=⇒ [1; 1; 2; 3; 3; 5; 9]

37

38 Chapter 5. Sorting Things

Here is the whole evaluation of sort [53; 9; 2; 6; 19]. We have missed out the detail of each insert
operation.

sort [53; 9; 2; 6; 19]
∗

=⇒ insert 53 (sort [9; 2; 6; 19])
∗

=⇒ insert 53 (insert 9 (sort [2; 6; 19]))
∗

=⇒ insert 53 (insert 9 (insert 2 (sort [6; 19])))
∗

=⇒ insert 53 (insert 9 (insert 2 (insert 6 (sort [19]))))
∗

=⇒ insert 53 (insert 9 (insert 2 (insert 6 (insert 19 (sort [])))))
∗

=⇒ insert 53 (insert 9 (insert 2 (insert 6 (insert 19 []))))
∗

=⇒ insert 53 (insert 9 (insert 2 (insert 6 [19])))
∗

=⇒ insert 53 (insert 9 (insert 2 [6; 19]))
∗

=⇒ insert 53 (insert 9 [2; 6; 19])
∗

=⇒ insert 53 [2; 6; 9; 19]
∗

=⇒ [2; 6; 9; 19; 53]

Here’s the full program, known as insertion sort:

insert : α → α list → α list
sort : α list → α list

let rec insert x l =
match l with

[] -> [x]
| h::t ->

if x <= h
then x :: h :: t
else h :: insert x t

let rec sort l =
match l with
[] -> []

| h::t -> insert h (sort t)

Notice that the type α list → α list rather than int list → int list. This is because OCaml’s comparison
functions like <= (used inside insert) work for types other than int. For example, OCaml knows how to
compare characters in alphabetical order:

sort ['p'; 'i'; 'm'; 'c'; 's'; 'h']
∗

=⇒ ['c'; 'h'; 'i'; 'm'; 'p'; 's']

How long does our sorting function take to run if the list to be sorted has n elements? Under the
assumption that our argument list is arbitrarily ordered rather than sorted, each insert operation takes
time proportional to n (the element might need to be inserted anywhere). We must run the insert function

Chapter 5. Sorting Things 39

as many times as there are elements so, adding these all up, the sort function takes time proportional to
n2. You might argue that the first insert operations only have to work with a very small list, and that this
fact should make the time less that n2. Can you see why that is not true? What happens if the list is sorted
already?

A more efficient algorithm can be found by considering a basic operation a little more complex than
insert, but which still operates in time proportional to the length of the argument list. Such a function is
merge, which takes two already sorted lists, and returns a single sorted list:

merge : α list → α list → α list

let rec merge x y =
match x, y with we can match on more than one thing using commas
[], l -> l if the first is empty, just return the second

| l, [] -> l and vice-versa
| hx::tx, hy::ty ->

if hx < hy
then hx :: merge tx (hy :: ty) put hx first because it is smaller
else hy :: merge (hx :: tx) ty otherwise put hy first

When x and y are both the empty list, the first case is picked because l matches the empty list. Here is
how merge proceeds:

merge [9; 53] [2; 6; 19]

=⇒ 2 :: (merge [9; 53] [6; 19])

=⇒ 2 :: 6 :: (merge [9; 53] [19])

=⇒ 2 :: 6 :: 9 :: (merge [53] [19])

=⇒ 2 :: 6 :: 9 :: 19 :: (merge [53] [])

=⇒ 2 :: 6 :: 9 :: 19 :: [53]
∗

=⇒ [2; 6; 9; 19; 53]

So merge can take two sorted lists, and produce a longer, sorted list, containing all the elements from both
lists. So, how can we use this to sort a list from scratch? Well, we can use length, take, and drop from the
previous chapter to split the list into two halves. Now, we must use a recursive call to sort each half, and
then we can merge them. This is known as merge sort.

msort : α list → α list

let rec msort l =
match l with

[] -> [] we are done if the list is empty
| [x] -> [x] also if it has only one element
| _ ->

let left = take (length l / 2) l in get the left hand half
let right = drop (length l / 2) l in and the right hand half

merge (msort left) (msort right) sort sublists and merge

40 Chapter 5. Sorting Things

The case for the single element is required because, if we split it into two halves, of length one and zero,
the recursion would not end – we would not have reduced the size of the problem.

How does msort work? Consider the evaluation of msort on the list [53; 9; 2; 6; 19]. We will
skip the evaluation of the merge, drop, take, and length functions, concentrating just on msort:

msort [53; 9; 2; 6 19]
∗

=⇒ merge (msort [53; 9]) (msort [2; 6; 19])
∗

=⇒ merge (merge (msort [53]) (msort [9])) (msort [2; 6; 19])
∗

=⇒ merge (merge [53] (msort [9])) (msort [2; 6; 19])
∗

=⇒ merge (merge [53] [9]) (msort [2; 6; 19])
∗

=⇒ merge [9; 53] (msort [2; 6; 19])
∗

=⇒ merge [9; 53] (merge (msort [2]) (msort [6; 19])
∗

=⇒ merge [9; 53] (merge [2] (msort [6; 19]))
∗

=⇒ merge [9; 53] (merge [2] (merge (msort [6]) (msort [19])))
∗

=⇒ merge [9; 53] (merge [2] (merge [6] (msort [19])))
∗

=⇒ merge [9; 53] (merge [2] (merge [6] [19]))
∗

=⇒ merge [9; 53] (merge [2] [6; 19])
∗

=⇒ merge [9; 53] [2; 6; 19]
∗

=⇒ [2; 6; 9; 19; 53]

From now on we will not be showing these full evaluations all the time – but when you are unsure of how
or why a function works, you can always write them out on paper yourself.

How long does it take?

How long does merge sort take to run? We can visualize it with the following diagram, in which we have
chosen a list of length eight (a power of two) for convenience.

[6; 4; 5; 7; 2; 5; 3; 4]
[6; 4; 5; 7][2; 5; 3; 4]
[6; 4][5; 7][2; 5][3; 4]
[6][4][5][7][2][5][3][4]
[4; 6][5; 7][2; 5][3; 4]
[4; 5; 6; 7][2; 3; 4; 5]
[2; 3; 4; 4; 5; 5; 6; 7]

In the top half of the diagram, the lists are being taken apart using take and drop, until they are small
enough to already be sorted. In the bottom half, they are being merged back together.

How long does each row take? For the top half: to split a list into two halves takes time proportional
to the length of the list. On the first line, we do this once on a list of length eight. On the second line, we
do it twice on lists of length four, and so on. So each line takes the same time overall. For the bottom half,
we have another function which takes time proportional to the length of its argument – merge – so each
line in the bottom half takes time proportional to the length too.

Chapter 5. Sorting Things 41

So, how many lines do we have? Well, in the top half we have roughly log2 n, and the same for the
bottom half. So, the total work done is 2× log2 n× n, which is proportional to n log2 n.

42 Chapter 5. Sorting Things

Questions

1. In msort, we calculate the value of the expression length l / 2 twice. Modify msort to remove
this inefficiency.

2. We know that take and drop can fail if called with incorrect arguments. Show that this is never the
case in msort.

3. Write a version of insertion sort which sorts the argument list into reverse order.

4. Write a function to detect if a list is already in sorted order.

5. We mentioned that the comparison functions like < work for many OCaml types. Can you
determine, by experimentation, how they work for lists? For example, what is the result of [1; 2]
< [2; 3]? What happens when we sort the following list of type char list list? Why?

[['o'; 'n'; 'e']; ['t'; 'w'; 'o']; ['t'; 'h'; 'r'; 'e'; 'e']]

6. Combine the sort and insert functions into a single sort function.

So Far

1Integers min_int . . . -3 -2 -1 0 1 2 3 . . . max_int of
type int. Booleans true and false of type bool. Char-

acters of type char like 'X' and '!'.

Mathematical operators + - * / mod which take two inte-
gers and give another.

Operators = < <= > >= <> which compare two values
and evaluate to either true or false.

The conditional if expression1 then expression2 else ex-
pression3, where expresssion1 has type bool and expression2
and expression3 have the same type as one another.

The boolean operators && and || which allow us to build
compound boolean expressions.

2 Assigning a name to the result of evaluating an expres-
sion using the let name = expression construct. Building

compound expressions using let name1 = expression1 in
let name2 = expression2 in . . .

Functions, introduced by let name argument1 argument2
. . . = expression. These have type α→ β, α→ β → γ etc.
for some types α, β, γ etc.

Recursive functions, which are introduced in the same
way, but using let rec instead of let.

3 Matching patterns using match expression1 with pat-
tern1 | . . . -> expression2 | pattern2 | . . . -> expression3

|. . . The expressions expression2, expression3 etc. must have
the same type as one another, and this is the type of the
whole match . . . with expression.

4 Lists, which are ordered collections of zero or more
elements of like type. They are written between square

brackets, with elements separated by semicolons e.g. [1;
2; 3; 4; 5]. If a list is non-empty, it has a head, which is
its first element, and a tail, which is the list composed of
the rest of the elements.

The :: “cons” operator, which adds an element to the front
of a list. The @ “append” operator, which concatenates two
lists together.

Lists and the :: “cons” symbol may be used for pattern
matching to distinguish lists of length zero, one, etc. and
with particular contents.

5 Matching two or more things at once, using commas
to separate as in match a, b with 0, 0 -> expression1

| x, y -> expression2 | . . .

Loading a Program from a File

Now that we are building larger functions, we might like to store them between sessions, rather than
typing them in every time. For example, compose a file like this in a text editor:

let rec length l =
match l with

[] -> 0
| h::t -> 1 + length t

let rec append a b =
match a with

[] -> b
| h::t -> h :: append t b

Save the file in same directory (folder) as you enter OCaml from, under the name lists.ml. We can then
tell OCaml to use the contents of that file like this:

OCaml

#use "lists.ml";;
val length : 'a list -> int = <fun>
val append : 'a list -> 'a list -> 'a list = <fun>

It is exactly the same as typing it in manually – the functions length and append will now be available for
use. Errors and warnings will be reported as usual. Note that the #use command is not part of the OCaml
language for expressions – it is just a command we are giving to OCaml.

45

Chapter 6

Functions upon Functions
upon Functions

Often we need to apply a function to every element of a list. For example, doubling each of the numbers
in a list of integers. We could do this with a simple recursive function, working over each element of a list:

double : int list → int list

let rec double l =
match l with

[] -> [] no element to process
| h::t -> (h * 2) :: double t process the element, and the rest

For example,

double [1; 2; 4]

=⇒ 2 :: double [2; 4]

=⇒ 2 :: 4 :: double [4]

=⇒ 2 :: 4 :: 8 :: double []

=⇒ 2 :: 4 :: 8 :: []
∗

=⇒ [2; 4; 8]

The result list does not need to have the same type as the argument list. We can write a function which,
given a list of integers, returns the list containing a boolean for each: true if the number is even, false if
it is odd.

evens : int list → bool list

let rec evens l =
match l with

[] -> [] no element to process
| h::t -> (h mod 2 = 0) :: evens t process the element, and the rest

47

48 Chapter 6. Functions upon Functions upon Functions

For example,

evens [1; 2; 4]

=⇒ false :: evens [2; 4]

=⇒ false :: true :: evens [4]

=⇒ false :: true :: true :: evens []

=⇒ false :: true :: true :: []
∗

=⇒ [false; true; true]

It would be tedious to write a similar function each time we wanted to apply a different operation to
every element of a list – can we build one which works for any operation? We will add a function as an
argument too:

map : (α → β) → α list → β list

let rec map f l =
match l with

[] -> [] no element to process
| h::t -> f h :: map f t process the element, and the rest

The map function takes two arguments: a function which processes a single element, and a list. It returns a
new list. We will discuss the type in a moment. For example, if we have a function halve:

halve : int → int

let halve x = x / 2

We can use map like this:

map halve [10; 20; 30]

=⇒ 5 :: map halve [20; 30]

=⇒ 5 :: 10 :: map halve [30]

=⇒ 5 :: 10 :: 15 :: map halve []

=⇒ 5 :: 10 :: 15 :: []
∗

=⇒ [5; 10; 15]

Now, let us look at that type: (α → β) → α list → β list. We can annotate the individual parts:

function f︷ ︸︸ ︷
(α→ β)→

argument list︷ ︸︸ ︷
α list →

result list︷ ︸︸ ︷
β list

We have to put the function f in parentheses, otherwise it would look like map had four arguments. It can
have any type α → β. That is to say, it can have any argument and result types, and they do not have to
be the same as each other – though they may be. The argument has type α list because each of its elements

Chapter 6. Functions upon Functions upon Functions 49

must be an appropriate argument for f. In the same way, the result list has type β list because each of
its elements is a result from f (in our halve example, α and β were both int). We can rewrite our evens
function to use map:

is_even : int → bool
evens : int list → bool list

let is_even x =
x mod 2 = 0

let evens l =
map is_even l

In this use of map, α was int, β was bool. We can make evens still shorter: when we are just using a
function once, we can define it directly, without naming it:

evens : int list → bool list

let evens l =
map (fun x -> x mod 2 = 0) l

This is called an anonymous function. It is defined using fun, a named argument, the -> arrow and the
function definition (body) itself. For example, we can write our halving function like this:

fun x -> x / 2

and, thus, write:

map (fun x -> x / 2) [10; 20; 30]
∗

=⇒ [5; 10; 15]

We use anonymous functions when a function is only used in one place and is relatively short, to avoid
defining it separately.

In the preceding chapter we wrote a sorting function and, in one of the questions, you were asked to
change the function to use a different comparison operator so that the function would sort elements into
reverse order. Now, we know how to write a version of the msort function which uses any comparison
function we give it. A comparison function would have type α → α → bool. That is, it takes two elements
of the same type, and returns true if the first is “greater” than the second, for some definition of “greater”
– or false otherwise.

So, let us alter our merge and msort functions to take an extra argument – the comparison function.
The result is shown in Figure 6.1. Now, if we make our own comparison operator:

greater : α → α → bool

let greater a b =
a >= b

50 Chapter 6. Functions upon Functions upon Functions

merge : (α → α → bool) → α list → α list → α list
msort : (α → α → bool) → α list → α list

let rec merge cmp x y =
match x, y with

[], l -> l
| l, [] -> l
| hx::tx, hy::ty ->

if cmp hx hy use our comparison function
then hx :: merge cmp tx (hy :: ty) put hx first – it is “smaller”
else hy :: merge cmp (hx :: tx) ty otherwise put hy first

let rec msort cmp l =
match l with

[] -> []
| [x] -> [x]
| _ ->

let left = take (length l / 2) l in
let right = drop (length l / 2) l in

merge cmp (msort cmp left) (msort cmp right)

Figure 6.1: Adding an extra argument to merge sort

we can use it with our new version of the msort function:

msort greater [5; 4; 6; 2; 1]
∗

=⇒ [6; 5; 4; 2; 1]

In fact, we can ask OCaml to make such a function from an operator such as <= or + just by enclosing it in
parentheses and spaces:

OCaml

(<=)
- : 'a -> 'a -> bool = <fun>
(<=) 4 5
- : bool = true

So, for example:

msort (<=) [5; 4; 6; 2; 1]
∗

=⇒ [1; 2; 4; 5; 6]

and

msort (>=) [5; 4; 6; 2; 1]
∗

=⇒ [6; 5; 4; 2; 1]

The techniques we have seen in this chapter are forms of program reuse, which is fundamental to writing
manageable large programs.

Chapter 6. Functions upon Functions upon Functions 51

Questions

1. Write a simple recursive function calm to replace exclamation marks in a char list with periods. For
example calm ['H'; 'e'; 'l'; 'p'; '!'; ' '; 'F'; 'i'; 'r'; 'e'; '!'] should evaluate to
calm ['H'; 'e'; 'l'; 'p'; '.'; ' '; 'F'; 'i'; 'r'; 'e'; '.']. Now rewrite your function
to use map instead of recursion. What are the types of your functions?

2. Write a function clip which, given an integer, clips it to the range 1 . . . 10 so that integers bigger
than 10 round down to 10, and those smaller than 1 round up to 1. Write another function cliplist
which uses this first function together with map to apply this clipping to a whole list of integers.

3. Express your function cliplist again, this time using an anonymous function instead of clip.

4. Write a function apply which, given another function, a number of times to apply it, and an initial
argument for the function, will return the cumulative effect of repeatedly applying the function. For
instance, apply f 6 4 should return f (f (f (f (f (f 4)))))). What is the type of your function?

5. Modify the insertion sort function from the preceding chapter to take a comparison function, in the
same way that we modified merge sort in this chapter. What is its type?

6. Write a function filter which takes a function of type α → bool and an α list and returns a list of
just those elements of the argument list for which the given function returns true.

7. Write the function for_all which, given a function of type α → bool and an argument list of type
α list evaluates to true if and only if the function returns true for every element of the list. Give
examples of its use.

8. Write a function mapl which maps a function of type α → β over a list of type α list list to produce
a list of type β list list.

So Far

1Integers min_int . . . -3 -2 -1 0 1 2 3 . . . max_int of
type int. Booleans true and false of type bool. Char-

acters of type char like 'X' and '!'.

Mathematical operators + - * / mod which take two inte-
gers and give another.

Operators = < <= > >= <> which compare two values
and evaluate to either true or false.

The conditional if expression1 then expression2 else ex-
pression3, where expresssion1 has type bool and expression2
and expression3 have the same type as one another.

The boolean operators && and || which allow us to build
compound boolean expressions.

2 Assigning a name to the result of evaluating an expres-
sion using the let name = expression construct. Building

compound expressions using let name1 = expression1 in
let name2 = expression2 in . . .

Functions, introduced by let name argument1 argument2
. . . = expression. These have type α→ β, α→ β → γ etc.
for some types α, β, γ etc.

Recursive functions, which are introduced in the same
way, but using let rec instead of let.

3 Matching patterns using match expression1 with pat-
tern1 | . . . -> expression2 | pattern2 | . . . -> expression3

|. . . The expressions expression2, expression3 etc. must have
the same type as one another, and this is the type of the
whole match . . . with expression.

4 Lists, which are ordered collections of zero or more
elements of like type. They are written between square

brackets, with elements separated by semicolons e.g. [1;
2; 3; 4; 5]. If a list is non-empty, it has a head, which is
its first element, and a tail, which is the list composed of
the rest of the elements.

The :: “cons” operator, which adds an element to the front
of a list. The @ “append” operator, which concatenates two
lists together.

Lists and the :: “cons” symbol may be used for pattern
matching to distinguish lists of length zero, one, etc. and
with particular contents.

5 Matching two or more things at once, using commas
to separate as in match a, b with 0, 0 -> expression1

| x, y -> expression2 | . . .

6 Anonymous functions fun name -> expression. Making
operators into functions as in (<) and (+).

Chapter 7

When Things Go Wrong

Some of the functions we have written so far have had a single, correct answer for each possible argument.
For example, there’s no number we cannot halve. However, when we use more complicated types such as
lists, there are plenty of functions which do not always have an answer – a list might not have a head or
a tail, for example. Our take and drop functions were unsatisfactory in case of invalid arguments. For
example, take 3 ['a'] would simply return []. This is bad practice – we are hiding errors rather than
confronting them.

OCaml has a mechanism for reporting such run-time errors (these are quite different from the type
errors OCaml reports when it refuses to accept a program at all). This mechanism is exceptions.

There are some built-in exceptions in OCaml. For example Division_by_zero, which is raised when a
program tries to divide a number by zero:

OCaml

10 / 0;;
Exception: Division_by_zero.

In order to signal bad arguments in functions like take and drop, we can rewrite them using the built-in
exception Invalid_argument, which also carries a message written between double quotation marks.
Typically we use this to record the name of the function which failed. Figure 7.1 shows take and drop
rewritten to use the Invalid_argument exception using raise. Note that these functions deal with two
problems of our previous versions: a negative argument, and being asked to take or drop more than the
number of elements in the list.

We can define our own exceptions, using exception. They can carry information along with them, of
a type we choose:

OCaml

exception Problem;;
exception Problem
exception NotPrime of int;;
exception NotPrime of int

We have defined two exceptions – Problem, and NotPrime which carries an integer along with it. Excep-
tions must start with a capital letter. The of construct can be used to introduce the type of information

55

56 Chapter 7. When Things Go Wrong

take : int → α list → α list
drop : int → α list → α list

let rec take n l =
match l with
[] ->
if n = 0
then []
else raise (Invalid_argument "take") note the parentheses

| h::t ->
if n < 0 then raise (Invalid_argument "take") else

if n = 0 then [] else h :: take (n - 1) t

let rec drop n l =
match l with

[] ->
if n = 0
then []
else raise (Invalid_argument "drop")

| h::t ->
if n < 0 then raise (Invalid_argument "drop") else

if n = 0 then l else drop (n - 1) t

Figure 7.1: Adding exceptions to take and drop

which travels along with an exception. Once they are defined we may use them in our own functions,
using raise:

OCaml

exception Problem;;
exception Problem
let f x = if x < 0 then raise Problem else 100 / x;;
val f : int -> int = <fun>
f 5
- : int = 20
f (-1);;
Exception: Problem.

Exceptions can be handled as well as raised. An exception handler deals with an exception raised by an
expression. Exception handlers are written using the try . . . with construct:

safe_divide : int → int → int

let safe_divide x y =
try x / y with
Division_by_zero -> 0

Chapter 7. When Things Go Wrong 57

The safe_divide function tries to divide x by y, but if the expression x / y raises the built-in excep-
tion Division_by_zero, instead we return zero. Thus, our safe_divide function succeeds for every
argument.

How do the types work here? The expression x / y has type int and so the expression we substitute in
case of Division_by_zero must have the same type: int, which indeed it does. And so, our rule that each
expression must have one and only one type is not violated – safe_divide always returns an int.

try

int︷ ︸︸ ︷
x / y with Division_by_zero ->

int︷︸︸︷
0︸ ︷︷ ︸

int

Here is another example. The function last returns the last element of a list:

last : α list → α

let rec last l =
match l with

[x] -> x
| _::t -> last t

The pattern match is incomplete, so whilst OCaml accepts the program it can fail at run-time. We can tidy
up the situation by raising the built-in exception Not_found:

last : α list → α

let rec last l =
match l with

[] -> raise Not_found
| [x] -> x
| _::t -> last t

The type of a function gives no indication of what exceptions it might raise or handle; it is the responsibility
of the programmer to ensure that exceptions which should be handled always are – this is an area in
which the type system cannot help us. Later in this book, we will see some alternatives to exceptions for
occasions when they are likely to be frequently raised, allowing the type system to make sure we have
dealt with each possible circumstance.

58 Chapter 7. When Things Go Wrong

Questions

1. Write a function smallest which returns the smallest positive element of a list of integers. If there
is no positive element, it should raise the built-in Not_found exception.

2. Write another function smallest_or_zero which uses the smallest function but if Not_found is
raised, returns zero.

3. Write an exception definition and a function which calculates the largest integer smaller than or
equal to the square root of a given integer. If the argument is negative, the exception should be
raised.

4. Write another function which uses the previous one, but handles the exception, and simply returns
zero when a suitable integer cannot be found.

5. Comment on the merits and demerits of exceptions as a method for dealing with exceptional
situations, in contrast to returning a special value to indicate an error (such as -1 for a function
normally returning a positive number).

So Far

1Integers min_int . . . -3 -2 -1 0 1 2 3 . . . max_int of
type int. Booleans true and false of type bool. Char-

acters of type char like 'X' and '!'.

Mathematical operators + - * / mod which take two inte-
gers and give another.

Operators = < <= > >= <> which compare two values
and evaluate to either true or false.

The conditional if expression1 then expression2 else ex-
pression3, where expresssion1 has type bool and expression2
and expression3 have the same type as one another.

The boolean operators && and || which allow us to build
compound boolean expressions.

2 Assigning a name to the result of evaluating an expres-
sion using the let name = expression construct. Building

compound expressions using let name1 = expression1 in
let name2 = expression2 in . . .

Functions, introduced by let name argument1 argument2
. . . = expression. These have type α→ β, α→ β → γ etc.
for some types α, β, γ etc.

Recursive functions, which are introduced in the same
way, but using let rec instead of let.

3 Matching patterns using match expression1 with pat-
tern1 | . . . -> expression2 | pattern2 | . . . -> expression3

|. . . The expressions expression2, expression3 etc. must have
the same type as one another, and this is the type of the
whole match . . . with expression.

4 Lists, which are ordered collections of zero or more
elements of like type. They are written between square

brackets, with elements separated by semicolons e.g. [1;
2; 3; 4; 5]. If a list is non-empty, it has a head, which is
its first element, and a tail, which is the list composed of
the rest of the elements.

The :: “cons” operator, which adds an element to the front
of a list. The @ “append” operator, which concatenates two
lists together.

Lists and the :: “cons” symbol may be used for pattern
matching to distinguish lists of length zero, one, etc. and
with particular contents.

5 Matching two or more things at once, using commas
to separate as in match a, b with 0, 0 -> expression1

| x, y -> expression2 | . . .

6 Anonymous functions fun name -> expression. Making
operators into functions as in (<) and (+).

7 Defining exceptions with exception name. They can
carry extra information by adding of type. Raising

exceptions with raise. Handling exceptions with try . . .
with . . .

Chapter 8

Looking Things Up

Many programs make use of a structure known as a dictionary. A real dictionary is used for associating
definitions with words; we use “dictionary” more generally to mean associating some unique keys (like
words) with values (like definitions). For example, we might like to store the following information about
the number of people living in each house in a road:

House People

1 4
2 2
3 2
4 3
5 1
6 2

The house number is the key, the number of people living in the house is the value. The order of keys is
unimportant – we just need to be able to associate each key with one (and only one) value. It would be very
inconvenient to store two lists, one of house numbers and one of people. For one thing, we would have
way of guaranteeing the two lists were of equal length. What we would like is a way of representing pairs
like (1, 4) and then having a single list of those. To make a pair in OCaml, just write it with parentheses
and a comma:

p : int × int

let p = (1, 4)

It has the type int × int, which we pronounce as “int cross int”. When printed on the screen, * is used
instead of × just as with multiplication. The two parts of the pair need not have the same type:

q : int × char

let q = (1, '1')

61

62 Chapter 8. Looking Things Up

We can write simple functions to extract the first and second element using pattern matching:

fst : α× β → α
snd : α× β → β

let fst p = match p with (x, _) -> x
let snd p = match p with (_, y) -> y

In fact, since pairs can only take one form (unlike lists, which have two forms: empty or consisting of a
head and a tail), OCaml lets us use the pattern directly in place of the argument:

fst : α× β → α
snd : α× β → β

let fst (x, _) = x
let snd (_, y) = y

Now, we can store a dictionary as a list of pairs:

census : (int × int) list

let census = [(1, 4); (2, 2); (3, 2); (4, 3); (5, 1); (6, 2)]

Notice the parentheses around int × int in the type. Otherwise, it would be the type of a pair of an integer
and an integer list:

y : int × int list

let y = (1, [2; 3; 4])

What operations might we want on dictionaries? We certainly need to look up a value given a key:

lookup : α → (α× β) list → β

let rec lookup x l =
match l with
[] -> raise Not_found we reached the end, and did not find it

| (k, v)::t ->
if k = x then v else lookup x t return the value, or keep looking

Chapter 8. Looking Things Up 63

For example, lookup 4 census evaluates to 3, whereas lookup 9 census raises Not_found. Another
basic operation is to add an entry (we must replace it if it already exists, to maintain the property that each
key appears at most once in a dictionary).

add : α → β → (α× β) list → (α× β) list

let rec add k v d = key, value, dictionary
match d with

[] -> [(k, v)] it is not present, so add it
| (k', v')::t ->

if k = k'
then (k, v) :: t found an equal key so replace the entry
else (k', v') :: add k v t otherwise, keep the entry and continue

For example, add 6 2 [(4, 5); (6, 3)] evaluates to [(4, 5); (6, 2)] (the value for key 6 is replaced),
whereas add 6 2 [(4, 5); (3, 6)] evaluates to [(4, 5); (3, 6); (6, 2)] (the new entry for key 6
is added). Removing an element is easy:

remove : α → (α× β) list → (α× β) list

let rec remove k d =
match d with

[] -> [] it is not present, so we are done
| (k', v')::t ->

if k = k'
then t equal key – remove it, and we are done
else (k', v') :: remove k t otherwise, retain and keep looking

The function always succeeds – even if the key was not found. We can use exception handling together
with our lookup operation to build a function which checks if a key exists within a dictionary:

key_exists : α → (α× β) list → bool

let key_exists k d =
try

let _ = lookup k d in true
with

Not_found -> false

If lookup k d succeeds, true will be returned. If not, an exception will be raised, which key_exists will
handle itself, and return false. Note that we did not give a name to the result of lookup k l because we
always return true if it succeeds.

Pairs are just a particular instance of a more general construct – the tuple. A tuple may contain two or
more things. For example, (1, false, 'a') has type int × bool × char.

64 Chapter 8. Looking Things Up

Questions

1. Write a function to determine the number of different keys in a dictionary.

2. Define a function replace which is like add, but raises Not_found if the key is not already there.

3. Write a function to build a dictionary from two equal length lists, one containing keys and another
containing values. Raise the exception Invalid_argument if the lists are not of equal length.

4. Now write the inverse function: given a dictionary, return the pair of two lists – the first containing
all the keys, and the second containing all the values.

5. Define a function to turn any list of pairs into a dictionary. If duplicate keys are found, the value
associated with the first occurrence of the key should be kept.

6. Write the function union a b which forms the union of two dictionaries. The union of two dictio-
naries is the dictionary containing all the entries in one or other or both. In the case that a key is
contained in both dictionaries, the value in the first should be preferred.

So Far

1Integers min_int . . . -3 -2 -1 0 1 2 3 . . . max_int of
type int. Booleans true and false of type bool. Char-

acters of type char like 'X' and '!'.

Mathematical operators + - * / mod which take two inte-
gers and give another.

Operators = < <= > >= <> which compare two values
and evaluate to either true or false.

The conditional if expression1 then expression2 else ex-
pression3, where expresssion1 has type bool and expression2
and expression3 have the same type as one another.

The boolean operators && and || which allow us to build
compound boolean expressions.

2 Assigning a name to the result of evaluating an expres-
sion using the let name = expression construct. Building

compound expressions using let name1 = expression1 in
let name2 = expression2 in . . .

Functions, introduced by let name argument1 argument2
. . . = expression. These have type α→ β, α→ β → γ etc.
for some types α, β, γ etc.

Recursive functions, which are introduced in the same
way, but using let rec instead of let.

3 Matching patterns using match expression1 with pat-
tern1 | . . . -> expression2 | pattern2 | . . . -> expression3

|. . . The expressions expression2, expression3 etc. must have
the same type as one another, and this is the type of the
whole match . . . with expression.

4 Lists, which are ordered collections of zero or more
elements of like type. They are written between square

brackets, with elements separated by semicolons e.g. [1;
2; 3; 4; 5]. If a list is non-empty, it has a head, which is
its first element, and a tail, which is the list composed of
the rest of the elements.

The :: “cons” operator, which adds an element to the front
of a list. The @ “append” operator, which concatenates two
lists together.

Lists and the :: “cons” symbol may be used for pattern
matching to distinguish lists of length zero, one, etc. and
with particular contents.

5 Matching two or more things at once, using commas
to separate as in match a, b with 0, 0 -> expression1

| x, y -> expression2 | . . .

6 Anonymous functions fun name -> expression. Making
operators into functions as in (<) and (+).

7 Defining exceptions with exception name. They can
carry extra information by adding of type. Raising

exceptions with raise. Handling exceptions with try . . .
with . . .

8 Tuples to combine a fixed number of elements (a, b),
(a, b, c) etc. with types α × β, α × β × γ etc.

Chapter 9

More with Functions

Look again at the type of a simple function with more than one argument:

add : int → int → int

let add x y = x + y

We have been considering functions like this as taking two arguments and returning a result. In fact, the
truth is a little different. The type int → int → int can also be written as int → (int → int). OCaml lets us
omit the parentheses because→ is a right-associative operator in the language of types. This gives us a
clue.

In truth, the function add is a function which, when you give it an integer, gives you a function which,
when you give it an integer, gives the sum.

This would be of no particular interest to us, except for one thing: we can give a function with two
arguments just one argument at a time, and it turns out to be rather useful. For example:

OCaml

let add x y = x + y
val add : int -> int -> int = <fun>
let f = add 6
val f : int -> int = <fun>
f 5
- : int = 11

Here, we have defined a function f by applying just one argument to add. This gives a function of type
int → int which adds six to any number. We then apply 5 to this function, giving 11. When defining
f, we used partial application (we applied only some of the arguments). In fact, even when applying all
the arguments at once, we could equally write (add 6) 5 rather than add 6 5. We can add six to every
element in a list:

map (add 6) [10; 20; 30]

67

68 Chapter 9. More with Functions

Here, add 6 has the type int → int, which is an appropriate type to be the first argument to map when
mapping over a list of integers. We can use partial application to simplify some examples from earlier in
the book. We mentioned that you can write, for example, (*) to produce a function from an operator. It
has type int → int → int. We may partially apply this function, so instead of writing

map (fun x -> x * 2) [10; 20; 30]

we may write

map ((*) 2) [10; 20; 30]

Recall the function to map something over a list of lists from the questions to Chapter 6:

mapl : (α → β) → α list list → β list list

let rec mapl f l =
match l with

[] -> []
| h::t -> map f h :: mapl f t

With partial application, we can write

mapl : (α → β) → α list list → β list list

let mapl f l = map (map f) l

Can you see why? The partially applied function map f is of type α list → β list, which is exactly the right
type to pass to map when mapping over lists of lists. In fact, we can go even further and write:

mapl : (α → β) → α list list → β list list

let mapl f = map (map f)

Here, map (map f) has type α list list → β list list so when an f is supplied to mapl, a function is returned
requiring just the list. This is partial application at work again.

You can see the real structure of multiple-argument functions, by writing add using anonymous
functions:

add : int → int → int

let add = fun x -> fun y -> x + y

Chapter 9. More with Functions 69

This makes it more obvious that our two-argument add function is really just composed of one-argument
functions, but let add x y = x + y is much clearer! We can apply one or more arguments at a time, but
they must be applied in order. Everything in this chapter also works for functions with more than two
arguments.

SUMMARY

The function f x y has type α → β → γ which can also be written α → (β → γ). Thus, it takes an
argument of type α and returns a function of type β→ γ which, when you give it an argument of type β
returns something of type γ. And so, we can apply just one argument to the function f (which is called
partial application), or apply both at once. When we write let f x y = ... this is just shorthand for let
f = fun x -> fun y -> ...

70 Chapter 9. More with Functions

Questions

1. Rewrite the summary paragraph at the end of this chapter for the three argument function g a b c.

2. Recall the function member x l which determines if an element x is contained in a list l. What is its
type? What is the type of member x? Use partial application to write a function member_all x ls
which determines if an element is a member of all the lists in the list of lists ls.

3. Why can we not write a function to halve all the elements of a list like this: map ((/) 2) [10; 20;
30]? Write a suitable division function which can be partially applied in the manner we require.

4. Write a function mapll which maps a function over lists of lists of lists. You must not use the let
rec construct. Is it possible to write a function which works like map, mapl, or mapll depending
upon the list given to it?

5. Write a function truncate which takes an integer and a list of lists, and returns a list of lists, each
of which has been truncated to the given length. If a list is shorter than the given length, it is
unchanged. Make use of partial application.

6. Write a function which takes a list of lists of integers and returns the list composed of all the first
elements of the lists. If a list is empty, a given number should be used in place of its first element.

So Far

1Integers min_int . . . -3 -2 -1 0 1 2 3 . . . max_int of
type int. Booleans true and false of type bool. Char-

acters of type char like 'X' and '!'.

Mathematical operators + - * / mod which take two inte-
gers and give another.

Operators = < <= > >= <> which compare two values
and evaluate to either true or false.

The conditional if expression1 then expression2 else ex-
pression3, where expresssion1 has type bool and expression2
and expression3 have the same type as one another.

The boolean operators && and || which allow us to build
compound boolean expressions.

2 Assigning a name to the result of evaluating an expres-
sion using the let name = expression construct. Building

compound expressions using let name1 = expression1 in
let name2 = expression2 in . . .

Functions, introduced by let name argument1 argument2
. . . = expression. These have type α→ β, α→ β → γ etc.
for some types α, β, γ etc.

Recursive functions, which are introduced in the same
way, but using let rec instead of let.

3 Matching patterns using match expression1 with pat-
tern1 | . . . -> expression2 | pattern2 | . . . -> expression3

|. . . The expressions expression2, expression3 etc. must have
the same type as one another, and this is the type of the
whole match . . . with expression.

4 Lists, which are ordered collections of zero or more
elements of like type. They are written between square

brackets, with elements separated by semicolons e.g. [1;
2; 3; 4; 5]. If a list is non-empty, it has a head, which is
its first element, and a tail, which is the list composed of
the rest of the elements.

The :: “cons” operator, which adds an element to the front
of a list. The @ “append” operator, which concatenates two
lists together.

Lists and the :: “cons” symbol may be used for pattern
matching to distinguish lists of length zero, one, etc. and
with particular contents.

5 Matching two or more things at once, using commas
to separate as in match a, b with 0, 0 -> expression1

| x, y -> expression2 | . . .

6 Anonymous functions fun name -> expression. Making
operators into functions as in (<) and (+).

7 Defining exceptions with exception name. They can
carry extra information by adding of type. Raising

exceptions with raise. Handling exceptions with try . . .
with . . .

8 Tuples to combine a fixed number of elements (a, b),
(a, b, c) etc. with types α × β, α × β × γ etc.

9 Partial application of functions by giving fewer than
the full number of arguments. Partial application with

functions built from operators.

Chapter 10

New Kinds of Data

So far, we have considered the simple types int, bool, char, the compound type list, and tuples. We have
built functions from and to these types. It would be possible to encode anything we wanted as lists and
tuples of these types, but it would lead to complex and error-strewn programs. It is time to make our own
types. New types are introduced using type. Here’s a type for colours:

OCaml

type colour = Red | Green | Blue | Yellow;;
type colour = Red | Green | Blue | Yellow

The name of our new type is colour. It has four constructors, written with an initial capital letter: Red,
Green, Blue, and Yellow. These are the possible forms a value of type colour may take. Now we can build
values of type colour:

col : colour
cols : colour list
colpair : char × colour

let col = Blue

let cols = [Red; Red; Green; Yellow]

let colpair = ('R', Red)

Let us extend our type to include any other colour which can be expressed in the RGB (Red, Green, Blue)
colour system (each component ranges from 0 to 255 inclusive, a standard range giving about 16 million
different colours).

73

74 Chapter 10. New Kinds of Data

type colour =
Red

| Green
| Blue
| Yellow
| RGB of int × int × int

cols : colour list

let cols = [Red; Red; Green; Yellow; RGB (150, 0, 255)]

We use of in our new constructor, to carry information along with values built with it. Here, we are using
something of type int × int × int. Notice that the list cols of type colour list contains varying things, but
they are all of the same type, as required by a list. We can write functions by pattern matching over our
new type:

components : colour → int × int × int

let components c =
match c with
Red -> (255, 0, 0)

| Green -> (0, 255, 0)
| Blue -> (0, 0, 255)
| Yellow -> (255, 255, 0)
| RGB (r, g, b) -> (r, g, b)

Types may contain a type variable like α to allow the type of part of the new type to vary – i.e. for the type
to be polymorphic. For example, here is a type used to hold either nothing, or something of any type:

OCaml

type 'a option = None | Some of 'a;;
type 'a option = None | Some of 'a

We can read this as “a value of type α option is either nothing, or something of type α”. For example:

nothing : α option
number : int option
numbers : int option list
word : char list option

let nothing = None

let number = Some 50

let numbers = [Some 12; None; None; Some 2]

let word = Some ['c'; 'a'; 'k'; 'e']

Chapter 10. New Kinds of Data 75

The option type is useful as a more manageable alternative to exceptions where the lack of an answer is
a common (rather than genuinely exceptional) occurrence. For example, here is a function to look up a
value in a dictionary, returning None instead of raising an exception if the value is not found:

lookup_opt : α → (α × β) list → β option

let rec lookup_opt x l =
match l with

[] -> None
| (k, v)::t -> if x = k then Some v else lookup_opt x t

Now, there is no need to worry about exception handling – we just pattern match on the result of the
function.

In addition to being polymorphic, new types may also be recursively defined. We can use this
functionality to define our own lists, just like the built-in lists in OCaml but without the special notation:

OCaml

type 'a sequence = Nil | Cons of 'a * 'a sequence;;
type 'a sequence = Nil | Cons of 'a * 'a sequence

We have called our type sequence to avoid confusion. It has two constructors: Nil which is equivalent to
[], and Cons which is equivalent to the :: operator. Cons carries two pieces of data with it – one of type α
(the head) and one of type α sequence (the tail). This is the recursive part of our definition. Now we can
make our own lists equivalent to OCaml’s built-in ones:

Built-in Ours Our Type

[] Nil α sequence
[1] Cons (1, Nil) int sequence
['a'; 'x'; 'e'] Cons ('a', Cons ('x', Cons ('e', Nil))) char sequence
[Red; RGB (20, 20, 20)] Cons (Red, Cons (RGB (20, 20, 20), Nil)) colour sequence

Now you can see why getting at the last element of a list in OCaml is harder than getting at the first
element – it is deeper in the structure. Let us compare some functions on OCaml lists with the same ones
on our new sequence type. First, the ones for built-in lists.

length : α list → int
append : α list → α list → α list

let rec length l =
match l with

[] -> 0
| _::t -> 1 + length t

let rec append a b =
match a with

[] -> b
| h::t -> h :: append t b

76 Chapter 10. New Kinds of Data

And now the same functions with our new sequence type:

length : α sequence → int
append : α sequence → α sequence → α sequence

let rec length s =
match s with

Nil -> 0
| Cons (_, t) -> 1 + length t

let rec append a b =
match a with

Nil -> b
| Cons (h, t) -> Cons (h, append t b)

Notice how all the conveniences of pattern matching such as completeness detection and the use of the
underscore work for our own types too.

A Type for Mathematical Expressions

Our sequence was an example of a recursively-defined type, which can be processed naturally by recursive
functions. Mathematical expressions can be modeled in the same way. For example, the expression
1 + 2× 3 could be drawn like this:

+

×

32

1

Notice that, in this representation, we never need parentheses – the diagram is unambiguous. We can
evaluate the expression by reducing each part in turn:

+

×

32

1

−→ +

61

−→ 7

Here’s a suitable type for such expressions:

Chapter 10. New Kinds of Data 77

type expr =
Num of int

| Add of expr * expr
| Subtract of expr * expr
| Multiply of expr * expr
| Divide of expr * expr

For example, the expression 1 + 2 ∗ 3 is represented in this data type as:

Add (Num 1, Multiply (Num 2, Num 3))

We can now write a function to evaluate expressions:

evaluate : expr → int

let rec evaluate e =
match e with

Num x -> x
| Add (e, e') -> evaluate e + evaluate e'
| Subtract (e, e') -> evaluate e - evaluate e'
| Multiply (e, e') -> evaluate e * evaluate e'
| Divide (e, e') -> evaluate e / evaluate e'

Building our own types leads to clearer programs with more predictable behaviour, and helps us to think
about a problem – often the functions are easy to write once we have decided on appropriate types.

78 Chapter 10. New Kinds of Data

Questions

1. Design a new type rect for representing rectangles. Treat squares as a special case.

2. Now write a function of type rect → int to calculate the area of a given rect.

3. Write a function which rotates a rect such that it is at least as tall as it is wide.

4. Use this function to write one which, given a rect list, returns another such list which has the
smallest total width and whose members are sorted narrowest first.

5. Write take, drop, and map functions for the sequence type.

6. Extend the expr type and the evaluate function to allow raising a number to a power.

7. Use the option type to deal with the problem that Division_by_zero may be raised from the
evaluate function.

So Far

1Integers min_int . . . -3 -2 -1 0 1 2 3 . . . max_int of
type int. Booleans true and false of type bool. Char-

acters of type char like 'X' and '!'.

Mathematical operators + - * / mod which take two inte-
gers and give another.

Operators = < <= > >= <> which compare two values
and evaluate to either true or false.

The conditional if expression1 then expression2 else ex-
pression3, where expresssion1 has type bool and expression2
and expression3 have the same type as one another.

The boolean operators && and || which allow us to build
compound boolean expressions.

2 Assigning a name to the result of evaluating an expres-
sion using the let name = expression construct. Building

compound expressions using let name1 = expression1 in
let name2 = expression2 in . . .

Functions, introduced by let name argument1 argument2
. . . = expression. These have type α→ β, α→ β → γ etc.
for some types α, β, γ etc.

Recursive functions, which are introduced in the same
way, but using let rec instead of let.

3 Matching patterns using match expression1 with pat-
tern1 | . . . -> expression2 | pattern2 | . . . -> expression3

|. . . The expressions expression2, expression3 etc. must have
the same type as one another, and this is the type of the
whole match . . . with expression.

4 Lists, which are ordered collections of zero or more
elements of like type. They are written between square

brackets, with elements separated by semicolons e.g. [1;
2; 3; 4; 5]. If a list is non-empty, it has a head, which is
its first element, and a tail, which is the list composed of
the rest of the elements.

The :: “cons” operator, which adds an element to the front
of a list. The @ “append” operator, which concatenates two
lists together.

Lists and the :: “cons” symbol may be used for pattern
matching to distinguish lists of length zero, one, etc. and
with particular contents.

5 Matching two or more things at once, using commas
to separate as in match a, b with 0, 0 -> expression1

| x, y -> expression2 | . . .

6 Anonymous functions fun name -> expression. Making
operators into functions as in (<) and (+).

7 Defining exceptions with exception name. They can
carry extra information by adding of type. Raising

exceptions with raise. Handling exceptions with try . . .
with . . .

8 Tuples to combine a fixed number of elements (a, b),
(a, b, c) etc. with types α × β, α × β × γ etc.

9 Partial application of functions by giving fewer than
the full number of arguments. Partial application with

functions built from operators.

10 New types with type name = constructor1 of type1
| constructor2 of type2 | . . . Pattern matching on

them as with the built-in types. Polymorphic types.

Chapter 11

Growing Trees

We have used lists to represent collections of elements of like type but varying length, and tuples to
represent collections of things of any type but fixed length. Another common type is the binary tree, which
is used to represent structures which branch, such as the arithmetical expressions we constructed in the
last chapter.

How can we represent such trees using an OCaml type? When we built our version of the OCaml list
type, we had two constructors – Cons to hold a head and a tail, and Nil to represent the end of the list.
With a tree, we need a version of Cons which can hold two tails – the left and right, and we still need a
version of Nil.

type 'a tree =
Br of 'a * 'a tree * 'a tree branch

| Lf leaf

Our type is called tree, and is polymorphic (can hold any kind of data at the branches). There are two
constructors: Br for branches, which hold three things in a tuple: an element, the left sub-tree, and the
right sub-tree. If it is not a Br, it is a Lf (leaf), which is used to signal that there is no left, or no right
sub-tree. Here are some representations in our new type of integer trees:

1 is written as Br (1, Lf, Lf)

2

1

is written as Br (2, Br (1, Lf, Lf), Lf)

81

82 Chapter 11. Growing Trees

2

41

is written as Br (2, Br (1, Lf, Lf), Br (4, Lf, Lf))

The empty tree is simply Lf. You can see now why we used abbreviated constructor names – even small
trees result in long textual representations. Let us write some simple functions on trees. To calculate the
number of elements in the tree, we just count one for each branch, and zero for each leaf:

size : α tree → int

let rec size tr =
match tr with
Br (_, l, r) -> 1 + size l + size r

| Lf -> 0

Notice that the recursive function follows the shape of the recursive type. A similar function can be used
to add up all the integers in an int tree:

total : int tree → int

let rec total tr =
match tr with
Br (x, l, r) -> x + total l + total r

| Lf -> 0

How can we calculate the maximum depth of a tree? The depth is the longest path from the root (top) of
the tree to a leaf.

max : int → int → int
maxdepth : α tree → int

let max x y =
if x > y then x else y

let rec maxdepth tr =
match tr with
Br (_, l, r) -> 1 + max (maxdepth l) (maxdepth r)

| Lf -> 0

We defined a function max which returns the larger of two integers. Then, in our main function, we count
a leaf as zero depth, and calculate the depth of a branch as one plus the maximum of the left and right
sub-trees coming from that branch. Now consider extracting all of the elements from a tree into a list:

Chapter 11. Growing Trees 83

list_of_tree : α tree → α list

let rec list_of_tree tr =
match tr with

Br (x, l, r) -> list_of_tree l @ [x] @ list_of_tree r
| Lf -> []

Notice that we chose to put all the elements on the left branch before the current element, and all the
elements in the right branch after. This is arbitrary (it is clear that there are multiple answers to the
question “How can I extract all the elements from a tree as a list?”). Before we consider real applications of
trees, let us look at one more function. Here is how to map over trees:

tree_map : (α → β) → α tree → β tree

let rec tree_map f tr =
match tr with

Br (x, l, r) -> Br (f x, tree_map f l, tree_map f r)
| Lf -> Lf

Notice the similarity to our map function for lists, both in the type and the definition.

Using trees to build better dictionaries

We have seen that arithmetic expressions can be drawn as trees on paper, and we have designed an OCaml
data type for binary trees to hold any kind of element. Now it is time to introduce the most important
application of trees: the binary search tree, which is another way of implementing the dictionary data
structure we described in Chapter 8.

The most important advantage of a tree is that it is often very much easier to reach a given element.
When searching in a dictionary defined as a list, it took on average time proportional to the number of
items in the dictionary to find a value for a key (the position of the required entry is, on average, halfway
along the list). If we use a binary tree, and if it is reasonably nicely balanced in shape, that time can be
reduced to the logarithm base two of the number of elements in the dictionary. Can you see why?

We can use our existing tree type. In the case of a dictionary, it will have type (α × β) tree, in other
words a tree of key-value pairs where the keys have some type α and the values some type β. For this
example, we are going to be using another built-in type, string. A string is a sequence of characters written
between double quotation marks. We have seen these as messages attached to exceptions, but they are a
basic OCaml type too.

So, our tree representing a dictionary mapping integers like 1 to their spellings like “one” would have
type (int × string) tree:

84 Chapter 11. Growing Trees

(3, "three")

(4, "four")(1, "one")

(2, "two")

which would be written as

Br ((3, "three"), Br ((1, "one"), Lf, Br ((2, "two"), Lf, Lf)), Br ((4, "four"), Lf, Lf))

If we arrange the tree such that, at each branch, everything to the left has a key less than the key at the
branch, and everything to the right has a key greater than that at the branch, we have a binary search tree.

Lookup is simple: start at the top, and if we have not found the key we are looking for, go left or right
depending upon whether the required key is smaller or larger than the value at the current branch. If we
reach a leaf, the key was not in the tree (assuming the tree is a well-formed binary search tree), and we
raise an exception.

lookup : (α× β) tree → α → β

let rec lookup tr k =
match tr with

Lf -> raise Not_found
| Br ((k', v), l, r) ->

if k = k' then v found the key – return the value
else if k < k' then lookup l k go left
else lookup r k go right

Alternatively, we may use the option type to avoid exceptions:

lookup : (α× β) tree → α → β option

let rec lookup tr k =
match tr with

Lf -> None
| Br ((k', v), l, r) ->

if k = k' then Some v found the key – return the value
else if k < k' then lookup l k go left
else lookup r k go right

How can we insert a new key-value pair into an existing tree? We can find the position to insert by using
the same procedure as the lookup function – going left or right at each branch as appropriate. If we find
an equal key, we put our new value there instead. Otherwise, we will end up at a leaf, and this is the

Chapter 11. Growing Trees 85

insertion point – thus, if the key is not in the dictionary when insert is used, it will be added in place of
an existing leaf.

insert : (α× β) tree → α → β → (α× β) tree

let rec insert tr k v =
match tr with

Lf -> Br ((k, v), Lf, Lf) insert at leaf
| Br ((k', v'), l, r) ->

if k = k' then Br ((k, v), l, r) replace value
else if k < k' then Br ((k', v'), insert l k v, r) go left
else Br ((k', v'), l, insert r k v) go right

For example, if we wish to insert the value "zero" for the key 0 in the tree drawn above, we would obtain

(3, "three")

(4, "four")(1, "one")

(2, "two")(0, "zero")

The shape of the tree is dependent upon the order of insertions into the tree – if they are in order (or
reverse order), we obtain a rather inefficient tree – no better a dictionary than a list in fact. However, on
average, we obtain a reasonably balanced tree, and logarithmic lookup and insertion times.

Lists and trees are examples of data structures. The design of an algorithm and its data structures are
intimately connected.

86 Chapter 11. Growing Trees

Questions

1. Write a function of type α → α tree → bool to determine if a given element is in a tree.

2. Write a function which flips a tree left to right such that, if it were drawn on paper, it would appear
to be a mirror image.

3. Write a function to determine if two trees have the same shape, irrespective of actual values of the
elements.

4. Write a function tree_of_list which builds a tree representation of a dictionary from a list
representation of a dictionary.

5. Write a function to combine two dictionaries represented as trees into one. In the case of clashing
keys, prefer the value from the first dictionary.

6. Can you define a type for trees which, instead of branching exactly two ways each time, can branch
zero or more ways, possibly different at each branch? Write simple functions like size, total, and
map using your new type of tree.

So Far

1Integers min_int . . . -3 -2 -1 0 1 2 3 . . . max_int of
type int. Booleans true and false of type bool. Char-

acters of type char like 'X' and '!'.

Mathematical operators + - * / mod which take two inte-
gers and give another.

Operators = < <= > >= <> which compare two values
and evaluate to either true or false.

The conditional if expression1 then expression2 else ex-
pression3, where expresssion1 has type bool and expression2
and expression3 have the same type as one another.

The boolean operators && and || which allow us to build
compound boolean expressions.

2 Assigning a name to the result of evaluating an expres-
sion using the let name = expression construct. Building

compound expressions using let name1 = expression1 in
let name2 = expression2 in . . .

Functions, introduced by let name argument1 argument2
. . . = expression. These have type α→ β, α→ β → γ etc.
for some types α, β, γ etc.

Recursive functions, which are introduced in the same
way, but using let rec instead of let.

3 Matching patterns using match expression1 with pat-
tern1 | . . . -> expression2 | pattern2 | . . . -> expression3

|. . . The expressions expression2, expression3 etc. must have
the same type as one another, and this is the type of the
whole match . . . with expression.

4 Lists, which are ordered collections of zero or more
elements of like type. They are written between square

brackets, with elements separated by semicolons e.g. [1;
2; 3; 4; 5]. If a list is non-empty, it has a head, which is
its first element, and a tail, which is the list composed of
the rest of the elements.

The :: “cons” operator, which adds an element to the front
of a list. The @ “append” operator, which concatenates two
lists together.

Lists and the :: “cons” symbol may be used for pattern
matching to distinguish lists of length zero, one, etc. and
with particular contents.

5 Matching two or more things at once, using commas
to separate as in match a, b with 0, 0 -> expression1

| x, y -> expression2 | . . .

6 Anonymous functions fun name -> expression. Making
operators into functions as in (<) and (+).

7 Defining exceptions with exception name. They can
carry extra information by adding of type. Raising

exceptions with raise. Handling exceptions with try . . .
with . . .

8 Tuples to combine a fixed number of elements (a, b),
(a, b, c) etc. with types α × β, α × β × γ etc.

9 Partial application of functions by giving fewer than
the full number of arguments. Partial application with

functions built from operators.

10 New types with type name = constructor1 of type1
| constructor2 of type2 | . . . Pattern matching on

them as with the built-in types. Polymorphic types.

11Strings, which are sequences of characters written
between double quotes and are of type string.

Chapter 12

In and Out

We have considered a function (and indeed, a whole program composed of many functions) to take a
chunk of data, do some calculations, and then produce a result. This assumption has allowed us to write
neat, easily understood programs.

However, some computer programs do not have all data available at the beginning of the program (or
even the beginning of a given function). The user might provide new data interactively, or the program
might fetch data from the internet, or two or more programs might communicate with one another in real
time.

We must learn how to write such programs, whilst understanding the utility of restricting such
complications to as small a part of the program as possible – interactivity turns out to be surprisingly hard
to reason about, since the result of a function may no longer depend only on its initial argument.

Writing to the screen

OCaml has a built-in function print_int which prints an integer to the screen:

OCaml

print_int 100;;
100- : unit = ()

What is the type of this function? Well, it is a function, and it takes an integer as its argument. It prints the
integer to the screen, and then returns. . . what? Nothing! OCaml has a special type to represent nothing,
called unit. There is exactly one thing of type unit which is written () and is called “unit”. So, the function
print_int has type int → unit.

There is another built-in function print_string of type string → unit to print a string, and another
print_newline to move to the next line. This function has type unit → unit because it requires no
substantive argument and produces no useful result. It is only wanted for its “side-effect”.

We can produce several side-effects, one after another, using the ; symbol. This evaluates the ex-
pression on its left hand side, throws away the result (which will normally be unit anyway), and then
evaluates the expression to its right hand side, returning the result (which is often unit too). The type of
the expression x ; y is thus the type of y. For example, we can write a function to write to the screen an int
× string pair as an integer on one line, followed by a string on another:

89

90 Chapter 12. In and Out

print_dict_entry : int × string → unit

let print_dict_entry (k, v) =
print_int k ; print_newline () ; print_string v ; print_newline ()

Notice we have added a second call to print_newline, so that our function can be called several times in
a row without intervening calls to print_newline. We wrote the function applications all on one line to
emphasize that ; behaves a little like an operator. However, for convenience, we would normally write it
like this:

print_dict_entry : int × string → unit

let print_dict_entry (k, v) =
print_int k;
print_newline ();
print_string v;
print_newline ()

This makes it look rather like ; is used to end each expression, but just remember that ; is a bit like an
operator – notice that there is no ; after the last print_newline (). Let us see how print_dict_entry is
used in practice:

OCaml

print_dict_entry (1, "one");;
1
one
- : unit = ()

How might we print a whole dictionary (represented as a list of entries) this way? Well, we could write
our own function to iterate over all the entries:

print_dict : (int × string) list → unit

let rec print_dict d =
match d with
[] -> () do nothing; just return unit

| h::t -> print_dict_entry h; print_dict t do this one, and move on

Better, we can extract this method into a more general one, for doing an action on each element of a list:

iter : (α → β) → α list → unit

let rec iter f l =
match l with

[] -> () do nothing; just return unit
| h::t -> f h; iter f t do this one, and move on

Chapter 12. In and Out 91

Normally β will be unit. Now we can redefine print_dict using iter:

print_dict : (int × string) list → unit

let print_dict d =
iter print_dict_entry d

or even. . .

let print_dict =
iter print_dict_entry

For example:

OCaml

print_dict [(1, "one"); (2, "two"); (3, "three")];;
1
one
2
two
3
three
- : unit = ()

Reading from the keyboard
Now we should like to write a function to read a dictionary as an (int × string) list. We will use two
built-in OCaml functions. The function read_int of type unit→ int waits for the user to type in an integer
and press the Enter key. The integer is then returned. The function read_line of type unit → string waits
for the user to type any string and press the enter key, returning the string.

We want the user to enter a series of keys and values (integers and strings), one per line. They will
enter zero for the integer to indicate no more input. Our function will take no argument, and return a
dictionary of integers and strings, so its type will be unit → (int × string) list.

read_dict : unit → (int × string) list

let rec read_dict () =
let i = read_int () in read an integer
if i = 0 then [] else if zero, we are done

let name = read_line () in otherwise, read a name too
(i, name) :: read_dict () build a dictionary entry, fetch another

We can run this function and type in some suitable values:

92 Chapter 12. In and Out

OCaml

read_dict ();;
1
oak
2
ash
3
elm
0
- : (int * string) list = [(1, "oak"); (2, "ash"); (3, "elm")]

But there is a problem. What happens if we type in something which is not an integer when an integer is
expected?

OCaml

read_dict ();;
1
oak
ash
Exception: Failure "int_of_string".

We must handle this exception, and ask the user to try again. Here’s a revised function:

read_dict : unit → (int × string) list

let rec read_dict () =
try

let i = read_int () in read an integer
if i = 0 then [] else if zero, we are done

let name = read_line () in otherwise, read a name too
(i, name) :: read_dict () build a dictionary entry, fetch another

with
Failure "int_of_string" ->

print_string "This is not a valid integer. Please try again.";
print_newline ();
read_dict ()

Now, typing mistakes can be fixed interactively:

OCaml

read_dict ();;
1
oak
ash
This is not a valid integer. Please try again.

Chapter 12. In and Out 93

2
ash
3
elm
0
- : (int * string) list = [(1, "oak"); (2, "ash"); (3, "elm")]

Using files
It is inconvenient to have to type new data sets in each time, so we will write functions to store a dictionary
to a file, and then to read it back out again.

OCaml has some basic functions to help us read and write from places data can be stored, such as files.
Places we can read from have type in_channel and places we can write to have type out_channel. Here
are functions for writing a dictionary of type (int × string) to a channel:

entry_to_channel : out_channel → (int × string) → unit
dictionary_to_channel : out_channel → (int × string) list → unit

let entry_to_channel ch (k, v) =
output_string ch (string_of_int k);
output_char ch '\n';
output_string ch v;
output_char ch '\n'

let dictionary_to_channel ch d =
iter (entry_to_channel ch) d

We are using the functions output_string and output_char to write the data in the same format we used
to print it to the screen. There is no output_int function, so we have used the built-in string_of_int
function to build a string from the integer. The character '\n' is a special one, representing moving to the
next line (there is no output_newline function).

How do we obtain such a channel? The function open_out gives an output channel for filename given
as a string. It has type string → out_channel. After we have written the contents to the file, we must call
close_out (which has type out_channel → unit) to properly close the file.

dictionary_to_file : string → (int × string) list → unit

let dictionary_to_file filename dict =
let ch = open_out filename in

dictionary_to_channel ch dict;
close_out ch

After running this function, you should find a file of the chosen name on your computer in the same
folder from which you are running OCaml. If you are not sure where the file is being put, consult
the documentation for your OCaml implementation, or use a full file path such as "C:/file.txt" or
"/home/yourname/file.txt", again depending on your system. In the following example, we are
reading a dictionary from the user and writing it to file as file.txt:

94 Chapter 12. In and Out

OCaml

dictionary_to_file "file.txt" (read_dict ());;
1
oak
2
ash
3
elm
0
- : unit

Now we have written a file, we can read it back in:

entry_of_channel : in_channel → (int × string)
dictionary_of_channel : in_channel → (int × string) list

let entry_of_channel ch =
let number = input_line ch in
let name = input_line ch in
(int_of_string number, name)

let rec dictionary_of_channel ch =
try

let e = entry_of_channel ch in
e :: dictionary_of_channel ch

with
End_of_file -> []

We have written a function entry_of_channel to read a single integer and string (one element of our
dictionary) from an input channel using the built-in functions input_line and int_of_string, and a
function dictionary_of_channel to read all of them as a dictionary. It makes use of the built-in exception
End_of_file to detect when there is no more in the file. Now, we can build the main function to read our
dictionary from the file:

dictionary_of_file : string → (int × string) list

let dictionary_of_file filename =
let ch = open_in filename in
let dict = dictionary_of_channel ch in

close_in ch;
dict

The process is the same as for dictionary_to_file but we use open_in and close_in instead of
open_out and close_out.

Chapter 12. In and Out 95

OCaml

dictionary_of_file "file.txt";;
- : (int * string) list = [(1, "oak"); (2, "ash"); (3, "elm")]

Summary of functions
We have introduced the types unit, in_channel, and out_channel, and the exception End_of_file. Here
are the functions we have used:

Function Type Description

print_int int → unit Print an integer to the screen.
print_string string → unit Print a string to the screen.
print_newline unit → unit Print a newline character to the screen, moving

to the beginning of the next line.
read_line unit → string Read a string from the user. The user indicates

they have finished by pressing the Enter key.
read_int unit → int Read an integer from the user. The user indi-

cates they have finished by pressing the Enter
key. Raises Failure "int_of_string" if the
user types something other than an integer.

int_of_string string → int Make an integer from a string. Raises Failure
"int_of_string" if the string does not repre-
sent a valid integer.

string_of_int int → string Makes a string representation of an integer.
open_out string → out_channel Given a filename, open a channel for output.

Raises the exception Sys_error if the file could
not be opened.

close_out out_channel → unit Close an output channel.
open_in string → in_channel Given a filename, open a channel for input.

Raises the exception Sys_error if the file could
not be opened.

close_in in_channel → unit Close an input channel.
output_string out_channel → string → unit Write a string to an output channel.
output_char out_channel → char → unit Write a character to an output channel.

96 Chapter 12. In and Out

Questions

1. Write a function to print a list of integers to the screen in the same format OCaml uses – i.e. with
square brackets and semicolons.

2. Write a function to read three integers from the user, and return them as a tuple. What exceptions
could be raised in the process? Handle them appropriately.

3. In our read_dict function, we waited for the user to type 0 to indicate no more data. This is
clumsy. Implement a new read_dict function with a nicer system. Be careful to deal with possible
exceptions which may be raised.

4. Write a function which, given a number x, prints the x-times table to a given file name. For example,
table "table.txt" 5 should produce a file table.txt containing the following:

1 2 3 4 5

2 4 6 8 10

3 6 9 12 15

4 8 12 16 20

5 10 15 20 25

Adding the special tabulation character '\t' after each number will line up the columns.

5. Write a function to count the number of lines in a given file.

6. Write a function copy_file of type string → string → unit which copies a file line by line. For
example, copy_file "a.txt" "b.txt" should produce a file b.txt identical to a.txt. Make sure
you deal with the case where the file a.txt cannot be found, or where b.txt cannot be created or
filled.

So Far

1Integers min_int . . . -3 -2 -1 0 1 2 3 . . . max_int of
type int. Booleans true and false of type bool. Char-

acters of type char like 'X' and '!'.

Mathematical operators + - * / mod which take two inte-
gers and give another.

Operators = < <= > >= <> which compare two values
and evaluate to either true or false.

The conditional if expression1 then expression2 else ex-
pression3, where expresssion1 has type bool and expression2
and expression3 have the same type as one another.

The boolean operators && and || which allow us to build
compound boolean expressions.

2 Assigning a name to the result of evaluating an expres-
sion using the let name = expression construct. Building

compound expressions using let name1 = expression1 in
let name2 = expression2 in . . .

Functions, introduced by let name argument1 argument2
. . . = expression. These have type α→ β, α→ β → γ etc.
for some types α, β, γ etc.

Recursive functions, which are introduced in the same
way, but using let rec instead of let.

3 Matching patterns using match expression1 with pat-
tern1 | . . . -> expression2 | pattern2 | . . . -> expression3

|. . . The expressions expression2, expression3 etc. must have
the same type as one another, and this is the type of the
whole match . . . with expression.

4 Lists, which are ordered collections of zero or more
elements of like type. They are written between square

brackets, with elements separated by semicolons e.g. [1;
2; 3; 4; 5]. If a list is non-empty, it has a head, which is
its first element, and a tail, which is the list composed of
the rest of the elements.

The :: “cons” operator, which adds an element to the front
of a list. The @ “append” operator, which concatenates two
lists together.

Lists and the :: “cons” symbol may be used for pattern
matching to distinguish lists of length zero, one, etc. and
with particular contents.

5 Matching two or more things at once, using commas
to separate as in match a, b with 0, 0 -> expression1

| x, y -> expression2 | . . .

6 Anonymous functions fun name -> expression. Making
operators into functions as in (<) and (+).

7 Defining exceptions with exception name. They can
carry extra information by adding of type. Raising

exceptions with raise. Handling exceptions with try . . .
with . . .

8 Tuples to combine a fixed number of elements (a, b),
(a, b, c) etc. with types α × β, α × β × γ etc.

9 Partial application of functions by giving fewer than
the full number of arguments. Partial application with

functions built from operators.

10 New types with type name = constructor1 of type1
| constructor2 of type2 | . . . Pattern matching on

them as with the built-in types. Polymorphic types.

11Strings, which are sequences of characters written
between double quotes and are of type string.

12 The value () and its type unit. Input channels
of type in_channel and output channels of type

out_channel. Built-in functions for reading from and
writing to them respectively.

Chapter 13

Putting Things in Boxes

So far, we have considered “pure” functions which have no side-effects, and functions which have the
side-effect of reading or writing information to and from, for example, files. When we assigned a value to
a name, that value could never change. Sometimes, it is convenient to allow the value of a name to be
changed – some algorithms are more naturally expressed in this way.

OCaml provides a construct known as a reference which is a box in which we can store a value. We
build a reference using the built-in function ref of type α → α ref. For example, let us build a reference
with initial contents 0. It will have type int ref.

OCaml

let x = ref 0;;
val x : int ref = {contents = 0}

OCaml tells us that x is a reference of type int ref which currently has contents 0. We can extract the
current contents of a reference using the !operator, which has type α ref → α.

let p = !x;;
val p : int = 0

We can update the contents of the reference using the := operator:

x := 50;;
- : unit = ()

The := operator has type α ref → α → unit, since it takes a reference and a new value to put in it, puts
the value in, and returns nothing. It is only useful for its side-effect. Now, we can get the contents with !
again.

let q = !x;;
val q : int = 50
p;;
- : int = 0

Notice that p is unchanged. Here’s a function to swap the contents of two references:

99

100 Chapter 13. Putting Things in Boxes

swap : α ref → α ref → unit

let swap a b =
let t = !a in
a := !b; b := t

We needed to use a temporary name t to store the contents of a. Can you see why?
This type of programming, which consists of issuing a number of commands, in order, about which

references are to be altered and how, is known as imperative programming. OCaml provides some useful
structures for imperative programming with references. We will look at these quickly now, and in a
moment build a bigger example program to show why they are useful.

For readability, OCaml lets us miss out the else part of the if ... then ... else ... construct if it
would just be (), which is if we are doing nothing in the else case, so

if x = 0 then a := 0 else ()

can be written as

if x = 0 then a := 0

and if x is not zero, the expression will just evaluate to (). Due to this, when putting imperative code
inside if ... then ... else ... constructs, we need to surround the inner imperative expressions with
parentheses so the meaning is unambiguous:

if x = y then
(a := !a + 1;
b := !b - 1)

else
c := !c + 1

OCaml allows us to use begin and end instead, for readability:

if x = y then
begin

a := !a + 1;
b := !b - 1

end
else

c := !c + 1

Doing it again and again

There are two ways to repeat an action. To perform an action a fixed number of times, we use the for ...
= ... to ... do ... done construct. For example,

Chapter 13. Putting Things in Boxes 101

for x = 1 to 5 do print_int x; print_newline () done

evaluates the expression print_int x; print_newline () five times: once where x is 1, once where x is
2 etc, so the result is:

for x = 1 to 5 do print_int x; print_newline () done;
1
2
3
4
5
- : unit = ()

This is known as a “for loop”. Note that the type of the whole for ... = ... to ... do ... done
expression is unit irrespective of the type of the expression(s) inside it.

There is another looping construct – this time for evaluating an expression repeatedly until some
condition is true. This is the while ... do ... done construct. It takes a boolean condition, and
evaluates a given expression repeatedly, zero or more times, until the boolean condition is false. For
example, here is a function which, given a positive integer, calculates the lowest power of two greater than
or equal to that number (i.e. for the argument 37, the result will be 64).

smallest_pow2 : int → int

let smallest_pow2 x =
let t = ref 1 in start the test value at 1

while !t < x do each time it is less than x. . .
t := !t * 2 . . . double it

done;
!t the final result is the contents of t

The while loop continues until the contents of the reference t is greater than or equal to x. At that point, it
ends, and the contents of t is returned from the function. Again, note that the type of the whole while ...
do ... done construct is unit.

Example: text file statistics

We are going to write a program to count the number of words, sentences and lines in a text file. We shall
consider the opening paragraph of Kafka’s “Metamorphosis”.

One morning, when Gregor Samsa woke from troubled dreams, he found
himself transformed in his bed into a horrible vermin. He lay on
his armour-like back, and if he lifted his head a little he could
see his brown belly, slightly domed and divided by arches into stiff
sections. The bedding was hardly able to cover it and seemed ready
to slide off any moment. His many legs, pitifully thin compared
with the size of the rest of him, waved about helplessly as he
looked.

102 Chapter 13. Putting Things in Boxes

There are newline characters at the end of each line, save for the last. You can cut and paste or type this
into a text file to try these examples out. Here, it is saved as gregor.txt.

We will just count lines first. To this, we will write a function channel_statistics to gather the
statistics by reading an input channel and printing them. Then we will have a function to open a named
file, call our first function, and close it again.

channel_statistics : in_channel → unit
file_statistics : string → unit

let channel_statistics in_channel =
let lines = ref 0 in
try
while true do
let line = input_line in_channel in

lines := !lines + 1
done

with
End_of_file ->
print_string "There were ";
print_int !lines;
print_string " lines.";
print_newline ()

let file_statistics name =
let channel = open_in name in
try
channel_statistics channel;
close_in channel

with
_ -> close_in channel

Notice the use of true as the condition for the while construct. This means the computation would carry
on forever, except that the End_of_file exception must eventually be raised. Note also that OCaml emits
a warning when reading the channel_statistics function:

Warning 26: unused variable line.

This is an example of a warning we can ignore – we are not using the actual value line yet, since we are
just counting lines without looking at their content. Running our program on the example file gives this:

OCaml

file_statistics "gregor.txt";;
There were 8 lines.
- : unit = ()

Let us update the program to count the number of words, characters, and sentences. We will do this
simplistically, assuming that the number of words can be counted by counting the number of spaces,

Chapter 13. Putting Things in Boxes 103

and that the sentences can be counted by noting instances of '.', '!', and '?'. We can extend the
channel_statistics function appropriately – file_statistics need not change:

channel_statistics : in_channel → unit

let channel_statistics in_channel =
let lines = ref 0 in
let characters = ref 0 in
let words = ref 0 in
let sentences = ref 0 in

try
while true do
let line = input_line in_channel in
lines := !lines + 1;
characters := !characters + String.length line;
String.iter

(fun c ->
match c with

'.' | '?' | '!' -> sentences := !sentences + 1
| ' ' -> words := !words + 1
| _ -> ())

line
done

with
End_of_file ->
print_string "There were ";
print_int !lines;
print_string " lines, making up ";
print_int !characters;
print_string " characters with ";
print_int !words;
print_string " words in ";
print_int !sentences;
print_string " sentences.";
print_newline ()

We have used the built-in function String.iter of type (char → unit) → string → unit which calls a
function we supply on each character of a string.

Substituting this version of channel_statistics (if you are cutting and pasting into OCaml, be sure
to also paste file_statistics in again afterwards, so it uses the new channel_statistics), gives the
following result on our example text:

OCaml

file_statistics "gregor.txt";;
There were 8 lines, making up 464 characters with 80 words in 4 sentences.
- : unit = ()

104 Chapter 13. Putting Things in Boxes

Adding character counts

We should like to build a histogram, counting the number of times each letter of the alphabet or other
character occurs. It would be tedious and unwieldy to hold a hundred or so references, and then pattern
match on each possible character to increment the right one. OCaml provides a data type called array for
situations like this.

An array is a place for storing a fixed number of elements of like type. We can introduce arrays by
using [| and |], with semicolons to separate the elements:

OCaml

let a = [|1; 2; 3; 4; 5|];;
val a : int array = [|1; 2; 3; 4; 5|]

We can access an element inside our array in constant time by giving the position of the element (known
as the subscript) in parentheses, after the array name and a period:

a.(0);;
- : int = 1

Notice that the first element has subscript 0, not 1. We can update any of the values in the array, also in
constant time, like this:

a.(4) <- 100;;
- : unit = ()
a;;
a : int array = [|1; 2; 3; 4; 100|]

If we try to access or update an element which is not within range, an exception is raised:

a.(5);;
Exception: Invalid_argument "index out of bounds".

There are some useful built-in functions for dealing with arrays. The function Array.length of type α
array → int returns the length of an array:

Array.length a;;
- : int = 5

In contrast to finding the length of a list, the time taken by Array.length is constant, since it was fixed
when the array was created. The Array.make function is used for building an array of a given length,
initialized with given values. It takes two arguments – the length, and the initial value to be given to every
element. It has type int → α → α array.

Array.make 6 true;;
- : bool array = [|true; true; true; true; true; true|]
Array.make 10 'A';;
- : char array = [|'A'; 'A'; 'A'; 'A'; 'A'; 'A'; 'A'; 'A'; 'A'; 'A'|]
Array.make 3 (Array.make 3 5);;
- : int array array = [|[|5; 5; 5|]; [|5; 5; 5|]; [|5; 5; 5|]|]

Chapter 13. Putting Things in Boxes 105

Back to our original problem. We want to store a count for each possible character. We cannot subscript
our arrays with characters directly, but each character has a special integer code (its so-called “ASCII
code”, a common encoding of characters as integers in use since the 1960s), and we can convert to and
from these using the built-in functions int_of_char and char_of_int. For example:

OCaml

int_of_char 'C';;
- : int = 67
char_of_int 67;;
- : char = 'C'

The numbers go from 0 to 255 inclusive (they do not all represent printable characters, for example the
newline character '\n' has code 10). So, we can store our histogram as an integer array of length 256.

Our main function is getting rather long, so we will write a separate one which, given the completed
array prints out the frequencies. If there were no instances of a particular character, no line is printed for
that character.

print_histogram : int array → unit

let print_histogram arr =
print_string "Character frequencies:";
print_newline ();
for x = 0 to 255 do for each character
if arr.(x) > 0 then only if the count is non-zero
begin

print_string "For character '";
print_char (char_of_int x); print the character
print_string "'(character number ";
print_int x; print the character number
print_string ") the count is ";
print_int arr.(x); print the count
print_string ".";
print_newline ()

end
done

This prints lines like:

For character 'd' (character number 100) the count is 6.

Now, we can alter our channel_statistics to create an appropriate array, and update it, once again
using String.iter:

106 Chapter 13. Putting Things in Boxes

channel_statistics : in_channel → unit

let channel_statistics in_channel =
let lines = ref 0 in
let characters = ref 0 in we do not indent all these lets.
let words = ref 0 in
let sentences = ref 0 in
let histogram = Array.make 256 0 in length 256, all elements initially 0

try
while true do
let line = input_line in_channel in

lines := !lines + 1;
characters := !characters + String.length line;
String.iter
(fun c ->

match c with
'.' | '?' | '!' -> sentences := !sentences + 1

| ' ' -> words := !words + 1
| _ -> ())

line;
String.iter for each character. . .
(fun c ->

let i = int_of_char c in
histogram.(i) <- histogram.(i) + 1) update histogram

line
done

with
End_of_file ->
print_string "There were ";
print_int !lines;
print_string " lines, making up ";
print_int !characters;
print_string " characters with ";
print_int !words;
print_string " words in ";
print_int !sentences;
print_string " sentences.";
print_newline ();
print_histogram histogram call histogram printer

Here is the output on our text:

OCaml

file_statistics "gregor.txt";;
There were 8 lines, making up 464 characters with 80 words in 4 sentences.
Character frequencies:
For character ' ' (character number 32) the count is 80.
For character ',' (character number 44) the count is 6.
For character '-' (character number 45) the count is 1.

Chapter 13. Putting Things in Boxes 107

For character '.' (character number 46) the count is 4.
For character 'G' (character number 71) the count is 1.
For character 'H' (character number 72) the count is 2.
For character 'O' (character number 79) the count is 1.
For character 'S' (character number 83) the count is 1.
For character 'T' (character number 84) the count is 1.
For character 'a' (character number 97) the count is 24.
For character 'b' (character number 98) the count is 10.
For character 'c' (character number 99) the count is 6.
For character 'd' (character number 100) the count is 25.
For character 'e' (character number 101) the count is 47.
For character 'f' (character number 102) the count is 13.
For character 'g' (character number 103) the count is 5.
For character 'h' (character number 104) the count is 22.
For character 'i' (character number 105) the count is 30.
For character 'k' (character number 107) the count is 4.
For character 'l' (character number 108) the count is 23.
For character 'm' (character number 109) the count is 15.
For character 'n' (character number 110) the count is 21.
For character 'o' (character number 111) the count is 27.
For character 'p' (character number 112) the count is 3.
For character 'r' (character number 114) the count is 20.
For character 's' (character number 115) the count is 24.
For character 't' (character number 116) the count is 21.
For character 'u' (character number 117) the count is 6.
For character 'v' (character number 118) the count is 4.
For character 'w' (character number 119) the count is 6.
For character 'y' (character number 121) the count is 10.
For character 'z' (character number 122) the count is 1.
- : unit = ()

The most common character is the space. The most common alphabetic character is 'e'.

108 Chapter 13. Putting Things in Boxes

Questions

1. Consider the expression
let x = ref 1 in let y = ref 2 in x := !x + !x; y := !x + !y; !x + !y

What references have been created? What are their initial and final values after this expression has
been evaluated? What is the type of this expression?

2. What is the difference between [ref 5; ref 5] and let x = ref 5 in [x; x]?

3. Imagine that the for ... to ... do ... done construct did not exist. How might we create the
same behaviour?

4. What are the types of these expressions?
[|1; 2; 3|]

[|true; false; true|]

[|[|1|]|]

[|[1; 2; 3]; [4; 5; 6]|]

[|1; 2; 3|].(2)

[|1; 2; 3|].(2) <- 4

5. Write a function to compute the sum of the elements in an integer array.

6. Write a function to reverse the elements of an array in place (i.e. do not create a new array).

7. Write a function table which, given an integer, builds the int array array representing the multipli-
cation table up to that number. For example, table 5 should yield:

1 2 3 4 5

2 4 6 8 10

3 6 9 12 15

4 8 12 16 20

5 10 15 20 25

There is more than one way to represent this as an array of arrays; you may choose.

8. The ASCII codes for the lower case letters 'a'. . .'z' are 97. . . 122, and for the upper case letters
'A'. . .'Z' they are 65. . . 90. Use the built-in functions int_of_char and char_of_int to write func-
tions to uppercase and lowercase a character. Non-alphabetic characters should remain unaltered.

9. Comment on the accuracy of our character, word, line, and sentence statistics in the case of our
example paragraph. What about in general?

10. Choose one of the problems you have identified, and modify our program to fix it.

So Far

1Integers min_int . . . -3 -2 -1 0 1 2 3 . . . max_int of
type int. Booleans true and false of type bool. Char-

acters of type char like 'X' and '!'.

Mathematical operators + - * / mod which take two inte-
gers and give another.

Operators = < <= > >= <> which compare two values
and evaluate to either true or false.

The conditional if expression1 then expression2 else ex-
pression3, where expresssion1 has type bool and expression2
and expression3 have the same type as one another.

The boolean operators && and || which allow us to build
compound boolean expressions.

2 Assigning a name to the result of evaluating an expres-
sion using the let name = expression construct. Building

compound expressions using let name1 = expression1 in
let name2 = expression2 in . . .

Functions, introduced by let name argument1 argument2
. . . = expression. These have type α→ β, α→ β → γ etc.
for some types α, β, γ etc.

Recursive functions, which are introduced in the same
way, but using let rec instead of let.

3 Matching patterns using match expression1 with pat-
tern1 | . . . -> expression2 | pattern2 | . . . -> expression3

|. . . The expressions expression2, expression3 etc. must have
the same type as one another, and this is the type of the
whole match . . . with expression.

4 Lists, which are ordered collections of zero or more
elements of like type. They are written between square

brackets, with elements separated by semicolons e.g. [1;
2; 3; 4; 5]. If a list is non-empty, it has a head, which is
its first element, and a tail, which is the list composed of
the rest of the elements.

The :: “cons” operator, which adds an element to the front
of a list. The @ “append” operator, which concatenates two
lists together.

Lists and the :: “cons” symbol may be used for pattern
matching to distinguish lists of length zero, one, etc. and
with particular contents.

5 Matching two or more things at once, using commas
to separate as in match a, b with 0, 0 -> expression1

| x, y -> expression2 | . . .

6 Anonymous functions fun name -> expression. Making
operators into functions as in (<) and (+).

7 Defining exceptions with exception name. They can
carry extra information by adding of type. Raising

exceptions with raise. Handling exceptions with try . . .
with . . .

8 Tuples to combine a fixed number of elements (a, b),
(a, b, c) etc. with types α × β, α × β × γ etc.

9 Partial application of functions by giving fewer than
the full number of arguments. Partial application with

functions built from operators.

10 New types with type name = constructor1 of type1
| constructor2 of type2 | . . . Pattern matching on

them as with the built-in types. Polymorphic types.

11Strings, which are sequences of characters written
between double quotes and are of type string.

12 The value () and its type unit. Input channels
of type in_channel and output channels of type

out_channel. Built-in functions for reading from and
writing to them respectively.

13 References of type α ref . Building them using ref,
accessing their contents using !and updating them

using the := operator.

Bracketing expressions together with begin and end in-
stead of parentheses for readability.

Performing an action many times based on a boolean con-
dition with the while boolean expression do expression done
construct. Performing an action a fixed number of times
with a varying parameter using the for name = start to end
do expression done construct.

Arrays of type α array. Creating an array with the
built-in function Array.make, finding its length with
Array.length, accessing an element with a.(subscript).
Updating with a.(subscript) <- expression. The built-in
function String.iter.

Chapter 14

The Other Numbers

The only numbers we have considered until now have been the integers. For a lot of programming tasks,
they are sufficient. And, except for their limited range and the possibility of division by zero, they are easy
to understand and use. However, we must now consider the real numbers.

It is clearly not possible to represent all numbers exactly – they might be irrational like π or e and have
no finite representation. For most uses, a representation called floating-point is suitable, and this is how
OCaml’s real numbers are stored. Not all numbers can be represented exactly, but arithmetic operations
are very quick.

Floating-point numbers have type float. We can write a floating-point number by including a decimal
point somewhere in it. For example 1.6 or 2.or 386.54123. Negative floating-point numbers are preceded
by the -. characters just like negative integers are preceded by the - character. Similarly, we write +. -. *.
/. for the standard arithmetic operators on floating-point numbers. Exponentiation is written with the **
operator.

OCaml

1.5;;
- : float = 1.5
6.;;
- : float = 6.
-.2.3456;;
- : float = -2.3456
1.0 +. 2.5 *. 3.0;;
- : float = 8.5
1.0 /. 1000.0;;
- : float = 0.001
1. /. 100000.;;
- : float = 1e-05
3000. ** 10.;;
- : float = 5.9049e+34
3.123 -. 3.;;
- : float = 0.12300000000000022

Notice an example of the limits of precision in floating-point operations in the final lines. Note also that
very small or very large numbers are written using scientific notation (such as 5.9049e+34 above). We

111

112 Chapter 14. The Other Numbers

can find out the range of numbers available:

OCaml

max_float;;
- : float = 1.79769313486231571e+308
min_float;;
- : float = 2.22507385850720138e-308

Working with floating-point numbers requires care, and a comprehensive discussion is outside the scope
of this book. These challenges exist in any programming language using the floating-point system. For
example, evaluating 1. /. 0.gives the special value infinity (there is no Division_by_zero exception
for floating-point operations). There are other special values such as neg_infinity and nan (“not a
number”). We will leave these complications for now – just be aware that they are lurking and must be
confronted when writing robust numerical programs.

A number of standard functions are provided, both for operating on floating-point numbers and for
converting to and from them, some of which are listed here:

Function Type Description

sqrt float → float Square root of a number.
log float → float Natural logarithm.
log10 float → float Logarithm base ten.
sin float → float Sine of an angle, given in radians.
cos float → float Cosine of an angle, given in radians.
tan float → float Tangent of an angle, given in radians.
atan float → float Arctangent of an angle, given in radians.
ceil float → float Calculate the nearest whole number at least as big as a

floating-point number.
floor float → float The nearest whole number at least as small as a floating-

point number.
float_of_int int → float Convert an integer to a floating-point number.
int_of_float float → int Build an integer from a floating-point number, ignoring

the non-integer part.
print_float float → unit Print a floating-point number to the screen.
string_of_float float → string Build a string from a floating-point number.
float_of_string string → float Build a floating-point number from a string. Raises

Failure "float_of_string" on a bad argument.

Let us write some functions with floating-point numbers. We will write some simple operations on vectors
in two dimensions. We will represent a point as a pair of floating-point numbers of type float × float such
as (2.0, 3.0). We will represent a vector as a pair of floating-point numbers too. Now we can write a
function to build a vector from one point to another, one to find the length of a vector, one to offset a point
by a vector, and one to scale a vector to a given length:

Chapter 14. The Other Numbers 113

make_vector : float × float → float × float → float × float
vector_length : float × float → float
offset_point : float × float → float × float → float × float
scale_to_length : float → float × float → float × float

let make_vector (x0, y0) (x1, y1) =
(x1 -. x0, y1 -. y0)

let vector_length (x, y) =
sqrt (x *. x +. y *. y)

let offset_point (x, y) (px, py) =
(px +. x, py +. y)

let scale_to_length l (a, b) =
let currentlength = vector_length (a, b) in

if currentlength = 0. then (a, b) else to avoid division by zero
let factor = l /. currentlength in
(a *. factor, b *. factor)

Notice that we have to be careful about division by zero, just as with integers. We have used tuples for
the points because it is easier to read this way – we could have passed each floating-point number as a
separate argument instead, of course.

Floating-point numbers are often essential, but must be used with caution. You will discover this when
answering the questions for this chapter. Some of these questions require using the built-in functions listed
in the table above.

114 Chapter 14. The Other Numbers

Questions
1. Give a function which rounds a positive floating-point number to the nearest whole number,

returning another floating-point number.

2. Write a function to find the point equidistant from two given points in two dimensions.

3. Write a function to separate a floating-point number into its integer and whole parts. Return them
as a tuple of type float × float.

4. Write a function star of type float → unit which, given a floating-point number between zero and
one, draws an asterisk to indicate the position. An argument of zero will result in an asterisk in
column one, and an argument of one an asterisk in column fifty.

5. Now write a function plot which, given a function of type float → float, a range, and a step size,
uses star to draw a graph. For example, assuming the existence of the name pi for π, we might see:

OCaml

plot sin 0. pi (pi /. 20.);;

*
*

*
*

*
*

*
*

*
*
*
*

*
*

*
*

*
*

*
*

*

Here, we have plotted the sine function on the range 0 . . . π in steps of size π/20. You can define pi
by calculating 4.0 *. atan 1.0.

So Far

1Integers min_int . . . -3 -2 -1 0 1 2 3 . . . max_int of
type int. Booleans true and false of type bool. Char-

acters of type char like 'X' and '!'.

Mathematical operators + - * / mod which take two inte-
gers and give another.

Operators = < <= > >= <> which compare two values
and evaluate to either true or false.

The conditional if expression1 then expression2 else ex-
pression3, where expresssion1 has type bool and expression2
and expression3 have the same type as one another.

The boolean operators && and || which allow us to build
compound boolean expressions.

2 Assigning a name to the result of evaluating an expres-
sion using the let name = expression construct. Building

compound expressions using let name1 = expression1 in
let name2 = expression2 in . . .

Functions, introduced by let name argument1 argument2
. . . = expression. These have type α→ β, α→ β → γ etc.
for some types α, β, γ etc.

Recursive functions, which are introduced in the same
way, but using let rec instead of let.

3 Matching patterns using match expression1 with pat-
tern1 | . . . -> expression2 | pattern2 | . . . -> expression3

|. . . The expressions expression2, expression3 etc. must have
the same type as one another, and this is the type of the
whole match . . . with expression.

4 Lists, which are ordered collections of zero or more
elements of like type. They are written between square

brackets, with elements separated by semicolons e.g. [1;
2; 3; 4; 5]. If a list is non-empty, it has a head, which is
its first element, and a tail, which is the list composed of
the rest of the elements.

The :: “cons” operator, which adds an element to the front
of a list. The @ “append” operator, which concatenates two
lists together.

Lists and the :: “cons” symbol may be used for pattern
matching to distinguish lists of length zero, one, etc. and
with particular contents.

5 Matching two or more things at once, using commas
to separate as in match a, b with 0, 0 -> expression1

| x, y -> expression2 | . . .

6 Anonymous functions fun name -> expression. Making
operators into functions as in (<) and (+).

7 Defining exceptions with exception name. They can
carry extra information by adding of type. Raising

exceptions with raise. Handling exceptions with try . . .
with . . .

8 Tuples to combine a fixed number of elements (a, b),
(a, b, c) etc. with types α × β, α × β × γ etc.

9 Partial application of functions by giving fewer than
the full number of arguments. Partial application with

functions built from operators.

10 New types with type name = constructor1 of type1
| constructor2 of type2 | . . . Pattern matching on

them as with the built-in types. Polymorphic types.

11Strings, which are sequences of characters written
between double quotes and are of type string.

12 The value () and its type unit. Input channels
of type in_channel and output channels of type

out_channel. Built-in functions for reading from and
writing to them respectively.

13 References of type α ref . Building them using ref,
accessing their contents using !and updating them

using the := operator.

Bracketing expressions together with begin and end in-
stead of parentheses for readability.

Performing an action many times based on a boolean con-
dition with the while boolean expression do expression done
construct. Performing an action a fixed number of times
with a varying parameter using the for name = start to end
do expression done construct.

Arrays of type α array. Creating an array with the
built-in function Array.make, finding its length with
Array.length, accessing an element with a.(subscript).
Updating with a.(subscript) <- expression. The built-in
function String.iter.

14 Floating-point numbers min_float . . . max_float
of type float. Floating-point operators +. *. -. /.

** and built-in functions sqrt log etc.

Chapter 15

The OCaml Standard Library

OCaml is provided with a wide range of useful built-in functions, in addition to the ones we have already
seen, called the OCaml Standard Library. These functions are divided into modules, one for each area of
functionality (in the next chapter, we will learn how to write our own modules). Here are a few examples
of modules in the standard library:

List The List module provides many functions over lists, some of
which we have already written ourselves in earlier chapters. It
also provides a simple implementation of dictionaries, and list
sorting and searching functions.

Array Functions for creating and modifying arrays, conversion to and
from lists, and array sorting. Functions to iterate over arrays.

Char Operations on characters, including conversions between char-
acters and their integer equivalents.

String Functions to build and modify strings, together with searching,
mapping, and iteration functions.

Random Generating pseudo-random integers and floating-point num-
bers.

Buffer Buffers are used for building strings up from sub-strings or
characters, without the cost of repeated string concatenation.

Printf Functions for printing with “format strings”, which are more
flexible and concise than repeated use of print_int and
print_string etc.

We will take the List module as an example. You can find the documentation for the OCaml Standard
Library installed with your copy of OCaml, or on the internet.

The functions from a module can be used by putting a period (full stop) between the module name
and the function. For example the length function in the List module can be used like this:

OCaml

List.length [1; 2; 3; 4; 5];;
- : int = 5

117

118 Chapter 15. The OCaml Standard Library

We can look at the type too by writing just the name of the function:

OCaml

List.length;;
- : 'a list -> int = <fun>

Here’s the documentation for List.length:

val length : 'a list -> int

Return the length (number of elements) of the given list.

We will talk about val in the next chapter. Sometimes, more information is required:

val nth : 'a list -> int -> 'a

Return the n-th element of the list. The first element (head of the list) is at position 0.
Raise Failure "nth" if the list is too short. Raise Invalid_argument "List.nth" if n
is negative.

For example,

OCaml

List.nth [1; 2; 4; 8; 16] 3;;
- : int = 8

In the documentation, we are told what the function does for each argument, and what exceptions may be
raised. Functions which are not tail-recursive and so may fail on huge arguments are marked as such.

The questions for this chapter use functions from the standard library, so you will need to have a copy
of the documentation to hand.

Chapter 15. The OCaml Standard Library 119

Questions

1. Write your own version of the function List.concat. The implementation OCaml provides is not
tail-recursive. Can you write one which is?

2. Use List.mem to write a function which returns true only if every list in a bool list list contains
true somewhere in it.

3. Write a function to count the number of exclamation marks in a string, using one or more functions
from the String module.

4. Use the String.map function to write a function to return a new copy of a string with all exclamation
marks replaced with periods (full stops).

5. Use the String module to write a function which concatenates a list of strings together.

6. Do the same with the Buffer module. This will be faster.

7. Use the String module to count the number of occurrences of the string "OCaml" within a given
string.

So Far

1Integers min_int . . . -3 -2 -1 0 1 2 3 . . . max_int of
type int. Booleans true and false of type bool. Char-

acters of type char like 'X' and '!'.

Mathematical operators + - * / mod which take two inte-
gers and give another.

Operators = < <= > >= <> which compare two values
and evaluate to either true or false.

The conditional if expression1 then expression2 else ex-
pression3, where expresssion1 has type bool and expression2
and expression3 have the same type as one another.

The boolean operators && and || which allow us to build
compound boolean expressions.

2 Assigning a name to the result of evaluating an expres-
sion using the let name = expression construct. Building

compound expressions using let name1 = expression1 in
let name2 = expression2 in . . .

Functions, introduced by let name argument1 argument2
. . . = expression. These have type α→ β, α→ β → γ etc.
for some types α, β, γ etc.

Recursive functions, which are introduced in the same
way, but using let rec instead of let.

3 Matching patterns using match expression1 with pat-
tern1 | . . . -> expression2 | pattern2 | . . . -> expression3

|. . . The expressions expression2, expression3 etc. must have
the same type as one another, and this is the type of the
whole match . . . with expression.

4 Lists, which are ordered collections of zero or more
elements of like type. They are written between square

brackets, with elements separated by semicolons e.g. [1;
2; 3; 4; 5]. If a list is non-empty, it has a head, which is
its first element, and a tail, which is the list composed of
the rest of the elements.

The :: “cons” operator, which adds an element to the front
of a list. The @ “append” operator, which concatenates two
lists together.

Lists and the :: “cons” symbol may be used for pattern
matching to distinguish lists of length zero, one, etc. and
with particular contents.

5 Matching two or more things at once, using commas
to separate as in match a, b with 0, 0 -> expression1

| x, y -> expression2 | . . .

6 Anonymous functions fun name -> expression. Making
operators into functions as in (<) and (+).

7 Defining exceptions with exception name. They can
carry extra information by adding of type. Raising

exceptions with raise. Handling exceptions with try . . .
with . . .

8 Tuples to combine a fixed number of elements (a, b),
(a, b, c) etc. with types α × β, α × β × γ etc.

9 Partial application of functions by giving fewer than
the full number of arguments. Partial application with

functions built from operators.

10 New types with type name = constructor1 of type1
| constructor2 of type2 | . . . Pattern matching on

them as with the built-in types. Polymorphic types.

11Strings, which are sequences of characters written
between double quotes and are of type string.

12 The value () and its type unit. Input channels
of type in_channel and output channels of type

out_channel. Built-in functions for reading from and
writing to them respectively.

13 References of type α ref . Building them using ref,
accessing their contents using !and updating them

using the := operator.

Bracketing expressions together with begin and end in-
stead of parentheses for readability.

Performing an action many times based on a boolean con-
dition with the while boolean expression do expression done
construct. Performing an action a fixed number of times
with a varying parameter using the for name = start to end
do expression done construct.

Arrays of type α array. Creating an array with the
built-in function Array.make, finding its length with
Array.length, accessing an element with a.(subscript).
Updating with a.(subscript) <- expression. The built-in
function String.iter.

14 Floating-point numbers min_float . . . max_float
of type float. Floating-point operators +. *. -. /.

** and built-in functions sqrt log etc.

15 Using functions from the OCaml Standard Library
with the form Module.function.

Chapter 16

Building Bigger Programs

So far we have been writing little programs and testing them interactively in OCaml. However, to conquer
the complexity of the task of writing larger programs, tools are needed to split them into well-defined
modules, each with a given set of types and functions. We can then build big systems without worrying that
some internal change to a single module will affect the whole program. This process of modularization is
known as abstraction, and is fundamental to writing large programs, a discipline sometimes called software
engineering.

In this chapter, you will have to create text files and type commands into the command prompt of your
computer. If you are not sure how to do this, or the examples in this chapter do not work for you, ask a
friend or teacher. In particular, if using Microsoft Windows, some of the commands may have different
names.

Making a module

We will be building a modular version of our text statistics program from Chapter 13. First, write the text
file shown in Figure 16.1 (but not the italic annotations) and save it as textstat.ml (OCaml programs
live in files with lowercase names ending in .ml).

The first line is a comment. Comments in OCaml are written between (* and *). We use comments in

(* Text statistics *) comment

type stats = int * int * int * int our type for statistics

let stats_from_channel _ = (0, 0, 0, 0) statistics from a channel

let stats_from_file filename = and from a file; exceptions are not handled
let channel = open_in filename in
let result = stats_from_channel channel in

close_in channel;
result

Figure 16.1: textstat.ml

123

124 Chapter 16. Building Bigger Programs

large programs to help the reader (who might be someone else, or ourselves some time later) to understand
the program.

We have then introduced a type for our statistics. This will hold the number of words, characters, and
sentences. We have then written a function stats_from_channel which for now just returns zeros for all
the statistics.

Now, we can issue a command to turn this program into a pre-processed OCaml module. This compiles
the program into an executable. The module can then be loaded into interactive OCaml, or used to build
standalone programs. Execute the following command:

ocamlc textstate.ml

You can see that the name of the OCaml compiler is ocamlc. If there are errors in textstat.ml they will
be printed out, including the line and character number of the problem. You must fix these, and try the
command again. If compilation succeeds, you will see the file textstate.cmo in the current directory.
There will be other files, but we are not worried about those yet. Let us load our pre-compiled module
into OCaml:

OCaml

#load "textstat.cmo";; load the module
Textstat.stats_from_file "gregor.txt";; use a function
- : int * int * int * int = (0, 0, 0, 0)

Note that #load is different from our earlier #use command – that was just reading a file as if it had been
cut and pasted – we are really loading the compiled module here.

Filling out the module

Let us add a real stats_from_channel function, to produce a working text statistics module. We will also
add utility functions for retrieving individual statistics from the stats type. This is shown in Figure 16.2.
We can compile it in the same way, and try it with our example file:

OCaml

#load "textstat.cmo";;
let s = Textstat.stats_from_file "gregor.txt";;
val s : Textstat.stats = (8, 464, 80, 4)
Textstat.lines s;;
- : int = 8
Textstat.characters s;;
- : int = 464
Textstat.words s;;
- : int = 80
Textstat.sentences s;;
- : int = 4

You might ask why we need the functions lines, characters etc. when the information is returned in
the tuple. Let us discuss that now.

Chapter 16. Building Bigger Programs 125

(* Text statistics *)
type stats = int * int * int * int

(* Utility functions to retrieve parts of a stats value *)
let lines (l, _, _, _) = l

let characters (_, c, _, _) = c

let words (_, _, w, _) = w

let sentences (_, _, _, s) = s

(* Read statistics from a channel *)
let stats_from_channel in_channel =

let lines = ref 0 in
let characters = ref 0 in
let words = ref 0 in
let sentences = ref 0 in

try
while true do
let line = input_line in_channel in

lines := !lines + 1;
characters := !characters + String.length line;
String.iter

(fun c ->
match c with
'.' | '?' | '!' -> sentences := !sentences + 1

| ' ' -> words := !words + 1
| _ -> ())

line
done;
(0, 0, 0, 0) (* Just to make the type agree *)

with
End_of_file -> (!lines, !characters, !words, !sentences)

(* Read statistics, given a filename. Exceptions are not handled *)
let stats_from_file filename =

let channel = open_in filename in
let result = stats_from_channel channel in

close_in channel;
result

Figure 16.2: textstat.ml

126 Chapter 16. Building Bigger Programs

Making an interface

We said that modules were for creating abstractions, so that the implementation of an individual module
could be altered without changing the rest of the program. However, we have not achieved that yet – the
details of the internal type are visible to the program using the module, and that program would break
if we changed the type of stats to hold an additional statistic. In addition, the internal count_words
function is available, even though the user of the module is not expected to use it.

What we would like to do is to restrict the module so that only the types and functions we want to be
used directly are available. For this, we use an interface. Interfaces are held in files ending in .mli, and we
can write one for our module. Our interface is shown in Figure 16.3.

In this interface, we have exposed every type and function. Types are written in the same way as in
the .ml file. Functions are written with val, followed by the name, a colon, and the type of the function.
We can compile this by giving the.mli file together with the.ml file when using ocamlc:

ocamlc textstat.mli textstat.ml

The ocamlc compiler has created at least two files: textstat.cmo as before and textstat.cmi (the
compiled interface). You should find this operates exactly as before when loaded into OCaml. Now, let us
remove the definition of the type from the interface, to make sure that the stats type is hidden, and its
parts can only be accessed using the lines, characters, words, and sentences functions. We will also
remove the declaration for stats_from_channel to demonstrate that functions we do not need can be
hidden too. This is shown in Figure 16.4.

Now, if we compile the program again with ocamlc textstat.mli textstat.ml, we see that the
stats_of_channel function is now not accessible, and the type of stats is now hidden, or abstract.

OCaml

#load "textstat.cmo";;
let s = Textstat.stats_from_file "gregor.txt";;
val s : Textstat.stats = <abstr> the type is now abstract
Textstat.lines s;;
- : int = 8
Textstat.characters s;;
- : int = 464
Textstat.words s;;
- : int = 80
Textstat.sentences s;;
- : int = 4
Textstat.stats_from_channel;; we have hidden this function
Error: Unbound value Textstat.stats_from_channel

We have successfully separated the implementation of our module from its interface – we can now change
the stats type internally to hold extra statistics without invalidating existing programs. This is abstraction
in a nutshell.

Chapter 16. Building Bigger Programs 127

(* Textstat module interface *)
type stats = int * int * int * int

val lines : stats -> int

val characters : stats -> int

val words : stats -> int

val sentences : stats -> int

val stats_from_channel : in_channel -> stats

val stats_from_file : string -> stats

Figure 16.3: textstat.mli

(* Textstat module interface *)
type stats

val lines : stats -> int

val characters : stats -> int

val words : stats -> int

val sentences : stats -> int

val stats_from_file : string -> stats

Figure 16.4: textstat.mli with hidden (abstract) type

128 Chapter 16. Building Bigger Programs

Building standalone programs

Now it is time to cut ourselves free from interactive OCaml, and build standalone programs which can be
executed directly. Let us add another file stats.ml which will use functions from the Textstat module
to create a program which, when given a file name, prints some statistics about it. This is illustrated in
Figure 16.5. There are some new things here:

1. The built-in array Sys.argv lists the arguments given to a command written at the command line.
The first is the name of our program, so we ignore that. The second will be the name of the file the
user wants our program to inspect. So, we match against that array. If there is any other array size,
we print out a usage message.

2. The function Printexc.to_string from the OCaml Standard Library converts an exception into a
string – we use this to print out the error.

3. There was an error, so it is convention to specify an exit code of 1 rather than 0. Do not worry about
this.

Let us compile this standalone program using ocamlc, giving a name for the executable program using
the -o option:

ocamlc textstat.mli textstat.ml stats.ml -o stats

Now, we can run the program:

$./stats gregor.txt
Words: 80
Characters: 464
Sentences: 4
Lines: 8

$./stats not_there.txt
An error occurred: Sys_error("not_there.txt: No such file or directory")

$./stats
Usage: stats <filename>

This output might look different on your computer, depending on your operating system. On most
computers, the ocamlopt compiler is also available. If we type

ocamlopt textstat.mli textstat.ml stats.ml -o stats

we obtain an executable which is much faster than before, and completely independent of OCaml – it can
run on any computer which has the same processor and operating system (such as Windows or Mac OS X)
as yours, with no need for an OCaml installation. On the other hand, the advantage of ocamlc is that it
produces a program which can run on any computer, so long as OCaml support is installed.

Chapter 16. Building Bigger Programs 129

(* Command line text file statistics program *)
try

begin match Sys.argv with see note 1
[|_; filename|] ->

let stats = Textstat.stats_from_file filename in
print_string "Words: ";
print_int (Textstat.words stats);
print_newline ();
print_string "Characters: ";
print_int (Textstat.characters stats);
print_newline ();
print_string "Sentences: ";
print_int (Textstat.sentences stats);
print_newline ();
print_string "Lines: ";
print_int (Textstat.lines stats);
print_newline ()

| _ ->
print_string "Usage: stats <filename>";
print_newline ()

end
with

e ->
print_string "An error occurred: ";
print_string (Printexc.to_string e); see note 2
print_newline ();
exit 1 see note 3

Figure 16.5: stats.ml

130 Chapter 16. Building Bigger Programs

Questions

1. Extend our example to print the character histogram data as we did in Chapter 13.

2. Write and compile a standalone program to reverse the lines in a text file, writing to another file.

3. Write a program which takes sufficiently long to run to allow you to compare the speed of programs
compiled with ocamlc and ocamlopt.

4. Write a standalone program to search for a given string in a file. Lines where the string is found
should be printed to the screen.

So Far

1Integers min_int . . . -3 -2 -1 0 1 2 3 . . . max_int of
type int. Booleans true and false of type bool. Char-

acters of type char like 'X' and '!'.

Mathematical operators + - * / mod which take two inte-
gers and give another.

Operators = < <= > >= <> which compare two values
and evaluate to either true or false.

The conditional if expression1 then expression2 else ex-
pression3, where expresssion1 has type bool and expression2
and expression3 have the same type as one another.

The boolean operators && and || which allow us to build
compound boolean expressions.

2 Assigning a name to the result of evaluating an expres-
sion using the let name = expression construct. Building

compound expressions using let name1 = expression1 in
let name2 = expression2 in . . .

Functions, introduced by let name argument1 argument2
. . . = expression. These have type α→ β, α→ β → γ etc.
for some types α, β, γ etc.

Recursive functions, which are introduced in the same
way, but using let rec instead of let.

3 Matching patterns using match expression1 with pat-
tern1 | . . . -> expression2 | pattern2 | . . . -> expression3

|. . . The expressions expression2, expression3 etc. must have
the same type as one another, and this is the type of the
whole match . . . with expression.

4 Lists, which are ordered collections of zero or more
elements of like type. They are written between square

brackets, with elements separated by semicolons e.g. [1;
2; 3; 4; 5]. If a list is non-empty, it has a head, which is
its first element, and a tail, which is the list composed of
the rest of the elements.

The :: “cons” operator, which adds an element to the front
of a list. The @ “append” operator, which concatenates two
lists together.

Lists and the :: “cons” symbol may be used for pattern
matching to distinguish lists of length zero, one, etc. and
with particular contents.

5 Matching two or more things at once, using commas
to separate as in match a, b with 0, 0 -> expression1

| x, y -> expression2 | . . .

6 Anonymous functions fun name -> expression. Making
operators into functions as in (<) and (+).

7 Defining exceptions with exception name. They can
carry extra information by adding of type. Raising

exceptions with raise. Handling exceptions with try . . .
with . . .

8 Tuples to combine a fixed number of elements (a, b),
(a, b, c) etc. with types α × β, α × β × γ etc.

9 Partial application of functions by giving fewer than
the full number of arguments. Partial application with

functions built from operators.

10 New types with type name = constructor1 of type1
| constructor2 of type2 | . . . Pattern matching on

them as with the built-in types. Polymorphic types.

11Strings, which are sequences of characters written
between double quotes and are of type string.

12 The value () and its type unit. Input channels
of type in_channel and output channels of type

out_channel. Built-in functions for reading from and
writing to them respectively.

13 References of type α ref . Building them using ref,
accessing their contents using !and updating them

using the := operator.

Bracketing expressions together with begin and end in-
stead of parentheses for readability.

Performing an action many times based on a boolean con-
dition with the while boolean expression do expression done
construct. Performing an action a fixed number of times
with a varying parameter using the for name = start to end
do expression done construct.

Arrays of type α array. Creating an array with the
built-in function Array.make, finding its length with
Array.length, accessing an element with a.(subscript).
Updating with a.(subscript) <- expression. The built-in
function String.iter.

14 Floating-point numbers min_float . . . max_float
of type float. Floating-point operators +. *. -. /.

** and built-in functions sqrt log etc.

15 Using functions from the OCaml Standard Library
with the form Module.function.

16 Writing modules in .ml files. Building interfaces
in .mli files with types and val. Using the ocamlc

and ocamlopt compilers. Comments written between (*
and *).

Answers to Questions

Hints may be found on page 179.

Chapter 1 (Starting Off)

1
The expression 17 is of type int and is a value already. The expression 1 + 2 * 3 + 4 is of type int and
evaluates to the value 11, since the multiplication is done first. The expression 800 / 80 / 8 has type int.
It is the same as (800 / 80) / 8 rather than 800 / (80 / 8) and evaluates to 1.

The expression 400 > 200 has type bool because this is the type of the result of the comparison operator
>. It evaluates to true. Similarly, 1 <> 1 has type bool and evaluates to false. The expression true ||
false is of type bool and evaluates to true since one of the operands is true. Similarly, true && false
evaluates to false since one of the operands is false. The expression if true then false else true
evaluates to false since the first (then) part of the conditional expression is chosen, and takes the place of
the entire expression.

The expression '%' is of type char and is already a value. The expression 'a' + 'b' has no type – it
gives a type error because the + operator does not operate on characters.

2
The mod operator is of higher precedence than the + operator. So 1 + 2 mod 3 and 1 + (2 mod 3) are the
same expression, evaluating to 1 + 2 which is 3, but (1 + 2) mod 3 is the same as 3 mod 3, which is 0.

3
The expression evaluates to 11. The programmer seems to be under the impression that spacing affects
evaluation order. It does not, and so this use of space is misleading.

4
The expression max_int + 1 evaluates to a number equal to min_int. Likewise, min_int - 1 evaluates
to a number equal to max_int. The number line “wraps around”. This leads to the odd situation that
max_int + 1 < max_int evaluates to true. It follows that when writing programs, we must be careful
about what happens when numbers may be very large or very small.

133

134 Answers to Questions

5
OCaml accepts the program, but complains when it is run:

OCaml

1 / 0;;
Exception: Division_by_zero.

We will talk about such exceptions later in the book. They are used for program errors which cannot
necessarily be found just by looking at the program text, but are only discovered during evaluation.

6
For x mod y:

when y = 0, OCaml prints Exception: Division_by_zero

when y <> 0, x < 0, the result will be negative

when y <> 0, x = 0, the result will be zero

This illustrates how even simple mathematical operators require careful specification when programming
– we must be explicit about the rules.

7
It prevents unexpected values: what would happen if an integer other than 1 and 0 was calculated in the
program – what would it mean? It is better just to use a different type. We can then show more easily that
a program is correct.

8
The lowercase characters are in alphabetical order, for example 'p' < 'q' evaluates to true. The uppercase
characters are similarly ordered. The uppercase letters are all “smaller” than the lowercase characters, so
for example 'A' < 'a' evaluates to true. For type bool, false is considered “less than” true.

Chapter 2 (Names and Functions)

1
Just take in an integer and return the number multiplied by ten. The function takes and returns an integer,
so the type is int → int.

OCaml

let times_ten x = x * 10;;
val times_ten : int -> int = <fun>

Answers to Questions 135

2
We must take two integer arguments, and use the && and <> operators to test if they are both non-zero. So
the result will be of type bool. The whole type will therefore be int → int → bool.

OCaml

let both_non_zero x y =
x <> 0 && y <> 0;;

val both_non_zero : int -> int -> bool = <fun>

3
Our function should take an integer, and return another one (the sum). So, it is type will be int → int. The
base case is when the number is equal to 1. Then, the sum of all numbers from 1 . . . 1 is just 1. If not, we
add the argument to the sum of all the numbers from 1 . . . (n− 1).

OCaml

let rec sum n =
if n = 1 then 1 else n + sum (n - 1);;

val sum : int -> int = <fun>

The function is recursive, so we used let rec instead of let. What happens if the argument given is zero
or negative?

4
The function will have type int → int → int. A number to the power of 0 is 1. A number to the power of 1
is itself. Otherwise, the answer is the current n multiplied by nx−1.

OCaml

let rec power x n =
if n = 0 then 1 else
(if n = 1 then x else

x * power x (n - 1));;
val power : int -> int -> int = <fun>

Notice that we had to put one if ... then ... else inside the else part of another to cope with the
three different cases. The parentheses are not actually required, though, so we may write it like this:

OCaml

let rec power x n =
if n = 0 then 1 else
if n = 1 then x else

x * power x (n - 1);;
val power : int -> int -> int = <fun>

In fact, we can remove the case for n = 1 since power x 1 will reduce to x * power x 0 which is just x.

136 Answers to Questions

5
The function isconsonant will have type char → bool. If a lower case character in the range 'a'. . .'z' is
not a vowel, it must be a consonant. So we can reuse the isvowel function we wrote earlier, and negate its
result using the not function:

OCaml

let isconsonant c = not (isvowel c);;
val isconsonant : char -> bool = <fun>

6
The expression is the same as let x = 1 in (let x = 2 in x + x), and so the result is 4. Both instances
of x in x + x evaluate to 2 since this is the value assigned to the name x in the nearest enclosing let
expression.

7
We could simply return 0 for a negative or zero argument:

OCaml

let rec factorial x =
if x <= 0 then 0 else

if x = 1 then 1 else
x * factorial (x - 1);;

val factorial : int -> int = <fun>

Note that factorial can fail in other ways too – if the number gets too big and “wraps around”. For
example, on the author’s computer, factorial 40 yields -2188836759280812032.

Chapter 3 (Case by Case)

1
We can just pattern match on the boolean. It does not matter, in this instance, which order the two cases
are in.

not : bool → bool

let not x =
match x with
true -> false

| false -> true

Answers to Questions 137

2
Recall our solution from the previous chapter:

sum : int → int

let rec sum n =
if n = 1 then 1 else n + sum (n - 1)

Modifying it to use pattern matching:

sum_match : int → int

let rec sum_match n =
match n with

1 -> 1
| _ -> n + sum_match (n - 1)

3
Again, modifying our solution from the previous chapter:

power_match : int → int → int

let rec power_match x n =
match n with

0 -> 1
| 1 -> x
| _ -> x * power_match x (n - 1)

5
This is the same as

match 1 + 1 with
2 ->

(match 2 + 2 with
3 -> 4

| 4 -> 5)

(A match case belongs to its nearest enclosing match). So the expression evaluates to 5.

138 Answers to Questions

6
We write two functions of type char → bool like this:

isupper : char → bool
islower : char → bool

let isupper c =
match c with
'A'..'Z' -> true

| _ -> false

let islower c =
match c with
'a'..'z' -> true

| _ -> false

Alternatively, we might write:

isupper : char → bool
islower : char → bool

let isupper c =
match c with
'A'..'Z' -> true

| _ -> false

let islower c =
not (isupper c)

These two solutions have differing behaviour upon erroneous arguments (such as punctuation). Can you
see why?

Chapter 4 (Making Lists)

1
This is similar to odd_elements:

even_elements : α list → α list

let rec even_elements l =
match l with
[] -> [] the list has zero elements

| [_] -> [] the list has one element – drop it
| _::b::t -> b :: even_elements t h is the head, t the tail

Answers to Questions 139

But we can perform the same trick as before, by reversing the cases, to reduce their number:

even_elements : α list → α list

let rec even_elements l =
match l with

_::b::t -> b :: even_elements t drop one, keep one, carry on
| _ -> [] otherwise, no more to drop

2
This is like counting the length of a list, but we only count if the current element is true.

count_true : bool list → int

let rec count_true l =
match l with

[] -> 0 no more
| true::t -> 1 + count_true t count this one
| false::t -> count_true t but not this one

We can use an accumulating argument in an auxiliary function to make a tail recursive version:

count_true_inner : int → bool list → int
count_true : bool list → int

let rec count_true_inner n l =
match l with

[] -> n no more; return the accumulator
| true::t -> count_true_inner (n + 1) t count this one
| false::t -> count_true_inner n t but not this one

let count_true l =
count_true_inner 0 l initialize the accumulator with zero

3
To make a palindrome from any list, we can append it to its reverse. To check if a list is a palindrome, we
can compare it for equality with its reverse (the comparison operators work over almost all types).

140 Answers to Questions

mk_palindrome : α list → α list
is_palindrome : α list → bool

let mk_palindrome l =
l @ rev l

let is_palindrome l =
l = rev l

4
We pattern match with three cases. The empty list, where we have reached the last element, and where we
have yet to reach it.

drop_last : α list → α list

let rec drop_last l =
match l with
[] -> []

| [_] -> [] it is the last one, so remove it
| h::t -> h :: drop_last t at least two elements remain

We can build a tail recursive version by adding an accumulating list, and reversing it when finished
(assuming a tail recursive rev, of course!)

drop_last_inner : α list → α list → α list
drop_last : α list → α list

let rec drop_last_inner a l =
match l with

[] -> rev a return the reversed accumulator
| [_] -> rev a same, ignoring the last element
| h::t -> drop_last_inner (h :: a) t at least two elements remain

let drop_last l =
drop_last_inner [] l

5
The empty list cannot contain the element; if there is a non-empty list, either the head is equal to the
element we are looking for, or if not, the result of our function is just the same as the result of recursing on
the tail.

Note that we are using the property that the || operator only evaluates its right hand side if the left
hand side is false to limit the recursion – it really does stop as soon as it finds the element.

Answers to Questions 141

member : α → α list → bool

let rec member e l =
match l with

[] -> false
| h::t -> h = e || member e t

6
If a list is empty, it is already a set. If not, either the head exists somewhere in the tail or it does not; if it
does exist in the tail, we can discard it, since it will be included later. If not, we must include it.

make_set : α list → α list

let rec make_set l =
match l with

[] -> []
| h::t -> if member h t then make_set t else h :: make_set t

For example, consider the evaluation of make_set [4; 5; 6; 5; 4]:

make_set [4; 5; 6; 5; 4]

=⇒ make_set [5; 6; 5; 4]

=⇒ make_set [6; 5; 4]

=⇒ 6 :: make_set [5; 4]

=⇒ 6 :: 5 :: make_set [4]

=⇒ 6 :: 5 :: 4 :: make_set []

=⇒ 6 :: 5 :: 4 :: []
∗

=⇒ [6; 5; 4]

7
The first part of the evaluation of rev takes time proportional to the length of the list, processing each
element once. However, when the lists are appended together, the order of the operations is such that the
first argument becomes longer each time. The @ operator, as we know, also takes time proportional to the
length of its first argument. And so, this accumulating of the lists takes time proportional to the square of

142 Answers to Questions

the length of the list.

rev [1; 2; 3; 4]

=⇒ rev [2; 3; 4] @ [1]

=⇒ (rev [3; 4] @ [2]) @ [1]

=⇒ ((rev [4] @ [3]) @ [2]) @ [1]

=⇒ (((rev [] @ [4]) @ [3]) @ [2]) @ [1]

=⇒ ((([] @ [4]) @ [3]) @ [2]) @ [1]

=⇒ (([4] @ [3]) @ [2]) @ [1]

=⇒ ([4, 3] @ [2]) @ [1]

=⇒ [4, 3, 2] @ [1]

=⇒ [4; 3; 2; 1]

By using an additional accumulating argument, we can write a version which operates in time proportional
to the length of the list.

rev_inner : α list → α list → α list
rev : α list → α list

let rec rev_inner a l =
match l with
[] -> a

| h::t -> rev_inner (h :: a) t

let rev l =
rev_inner [] l

For the same list:

rev [1; 2; 3; 4]

=⇒ rev_inner [] [1; 2; 3; 4]

=⇒ rev_inner [1] [2; 3; 4]

=⇒ rev_inner [2; 1] [3; 4]

=⇒ rev_inner [3; 2; 1] [4]

=⇒ rev_inner [4; 3; 2; 1] []

=⇒ [4; 3; 2; 1]

Chapter 5 (Sorting Things)

1
Simply add an extra let to define a name representing the number we will take or drop:

Answers to Questions 143

msort : α list → α list

let rec msort l =
match l with

[] -> [] we are done if the list is empty
| [x] -> [x] and also if it only has one element
| _ ->

let x = length l / 2 in
let left = take x l in get the left hand half

let right = drop x l in and the right hand half
merge (msort left) (msort right) sort and merge them

2
The argument to take or drop is length l / 2 which is clearly less than or equal to length l for all
possible values of l. Thus, take and drop always succeed. In our case, take and drop are only called with
length l is more than 1, due to the pattern matching.

3
We may simply replace the <= operator with the >= operator in the insert function.

insert : α → α list → α list

let rec insert x l =
match l with

[] -> [x]
| h::t ->

if x >= h
then x :: h :: t
else h :: insert x t

The sort function is unaltered.

4
We require a function of type α list → bool. List of length zero and one are, by definition, sorted. If the list
is longer, check that its first two elements are in sorted order. If this is true, also check that the rest of the
list is sorted, starting with the second element.

is_sorted : α list → bool

let rec is_sorted l =
match l with

[] -> true
| [x] -> true
| a::b::t -> a <= b && is_sorted (b :: t)

144 Answers to Questions

We can reverse the cases to simplify:

is_sorted : α list → bool

let rec is_sorted l =
match l with
a::b::t -> a <= b && is_sorted (b :: t)

| _ -> true

5
Lists are compared starting with their first elements. If the elements differ, they are compared, and that is
the result of the comparison. If both have the same first element, the second elements are considered, and
so on. If the end of one list is reached before the other, the shorter list is considered smaller. For example:

[1] < [2] < [2; 1] < [2; 2]

These are the same principles you use to look up a word in a dictionary: compare the first letters – if same,
compare the second etc. So, when applied to the example in the question, it has the effect of sorting the
words into alphabetical order.

6
The let rec construct can be nested just like the let construct:

sort : α list → α list

let rec sort l =
let rec insert x s =
match s with
[] -> [x]

| h::t ->
if x <= h
then x :: h :: t
else h :: insert x t

in
match l with
[] -> []

| h::t -> insert h (sort t)

We have renamed the second argument of the insert function to avoid confusion.

Answers to Questions 145

Chapter 6 (Functions upon Functions upon Functions)

1
Our function will have type char list → char list. We just match on the argument list: if it is empty, we
are done. If it starts with an exclamation mark, we output a period, and carry on. If not, we output the
character unchanged, and carry on:

calm : char list → char list

let rec calm l =
match l with

[] -> []
| '!'::t -> '.' :: calm t
| h::t -> h :: calm t

To use map instead, we write a simple function calm_char to process a single character. We can then use
map to build our main function:

calm_char : char → char
calm : char list → char list

let calm_char x =
match x with '!' -> '.' | _ -> x

let calm l =
map calm_char l

This avoids the explicit recursion of the original, and so it is easier to see what is going on.

2
The clip function is of type int → int and is easy to write:

clip : int → int

let clip x =
if x < 1 then 1 else

if x > 10 then 10 else x

Now we can use map for the cliplist function:

146 Answers to Questions

cliplist : int list → int list

let cliplist l =
map clip l

3
Just put the body of the clip function inside an anonymous function:

cliplist : int list → int list

let cliplist l =
map

(fun x ->
if x < 1 then 1 else

if x > 10 then 10 else x)
l

4
We require a function apply f n x which applies function f a total of n times to the initial value x. The
base case is when n is zero.

apply : (α → α) → int → α → α

let rec apply f n x =
if n = 0
then x just x
else f (apply f (n - 1) x) reduce problem size by one

Consider the type:

function f︷ ︸︸ ︷
(α→ α)→

n︷︸︸︷
int →

x︷︸︸︷
α →

result︷︸︸︷
α

The function f must take and return the same type α, since its result in one iteration is fed back in as its
argument in the next. Therefore, the argument x and the final result must also have type α. For example,
for α = int, we might have a power function:

power : int → int → int

let power a b =
apply (fun x -> x * a) b 1

So power a b calculates ab.

Answers to Questions 147

5
We can add an extra argument to the insert function, and use that instead of the comparison operator:

insert : (α → α → bool) → α → α list → α list

let rec insert f x l = add extra argument f
match l with

[] -> [x]
| h::t ->

if f x h
then x :: h :: t
else h :: insert f x t remember to add f here too

Now we just need to rewrite the sort function.

sort : (α → α → bool) → α list → α list

let rec sort f l =
match l with

[] -> []
| h::t -> insert f h (sort f t)

6
We cannot use map here, because the result list will not necessarily be the same length as the argument list.
The function will have type (α → bool) → α list → α list.

filter : (α → bool) → α list → α list

let rec filter f l =
match l with

[] -> []
| h::t ->

if f h
then h :: filter f t
else filter f t

For example, filter (fun x -> x mod 2 = 0) [1; 2; 4; 5] evaluates to [2; 4].

7
The function will have type (α → bool) → α list → bool.

148 Answers to Questions

for_all : (α → bool) → α list → bool

let rec for_all f l =
match l with
[] -> true

| h::t -> f h && for_all f t true for this one, and all the others

For example, we can see if all elements of a list are positive: for_all (fun x -> x > 0) [1; 2; -1]
evaluates to false. Notice that we are relying on the fact that && only evaluates its right hand side when
the left hand side is true to limit the recursion.

8
The function will have type (α → β) → α list list → β list list. We use map on each element of the list.

mapl : (α → β) → α list list → β list list

let rec mapl f l =
match l with
[] -> []

| h::t -> map f h :: mapl f t

We have used explicit recursion to handle the outer list, and map to handle each inner list.

Chapter 7 (When Things Go Wrong)

1
The function smallest_inner takes a currently smallest found integer, a boolean value found indicating
if we have found any suitable value or not, and the list of integers. It is started with max_int as the current
value, so that any number is smaller than it, and false for found because nothing has been found yet.

smallest_inner : int → bool → int list → int
smallest : int list → int

let rec smallest_inner current found l =
match l with
[] ->
if found then current else raise Not_found

| h::t ->
if h > 0 && h < current
then smallest_inner h true t
else smallest_inner current found t

let smallest l =
smallest_inner max_int false l

Answers to Questions 149

Thus, the function raises an exception in the case of an empty list, or one which is non-empty but contains
no positive integer, and otherwise returns the smallest positive integer in the list.

2
We just surround the call to smallest with an exception handler for Not_found.

smallest_or_zero : int list → int

let smallest_or_zero l =
try smallest l with Not_found -> 0

3
We write a function sqrt_inner which, given a test number x and a target number n squares x and tests if
it is more than n. If it is, the answer is x - 1. The test number will be initialized at 1. The function sqrt
raises our exception if the argument is less than zero, and otherwise begins the testing process.

sqrt_inner : int → int → int
sqrt : int → int

let rec sqrt_inner x n =
if x * x > n then x - 1 else sqrt_inner (x + 1) n

exception Complex

let sqrt n =
if n < 0 then raise Complex else sqrt_inner 1 n

4
We wrap up the function, handle the Complex exception and return.

safe_sqrt : int → int

let safe_sqrt n =
try sqrt n with Complex -> 0

Chapter 8 (Looking Things Up)

1
Since the keys must be unique, the number of different keys is simply the length of the list representing
the dictionary – so we can just use the usual length function.

150 Answers to Questions

2
The type is the same as for the add function. However, if we reach the end of the list, we raise an exception,
since we did not manage to find the entry to replace.

replace : α → β → (α × β) list → (α × β) list

let rec replace k v l =
match l with

[] -> raise Not_found could not find it; fail
| (k', v')::t ->

if k = k'
then (k, v) :: t found it – replace
else (k', v') :: replace k v t keep it, and keep looking

3
The function takes a list of keys and a list of values and returns a dictionary. So it will have type α list →
β list → (α × β) list.

mkdict : α list → β list → (α × β) list

let rec mkdict keys values =
match keys, values with

[], [] -> []
| [], _ -> raise (Invalid_argument "mkdict") unequal length
| _, [] -> raise (Invalid_argument "mkdict") ditto
| k::ks, v::vs -> (k, v) :: mkdict ks vs make one pair, and move on

4
This will have the type (α × β) list → α list × β list. For the first time, we need to return a pair, building
up both result lists element by element. This is rather awkward, since we will need the tails of both of the
eventual results, so we can attach the new heads. We can do this by pattern matching.

mklists : (α × β) list → α list × β list

let rec mklists l =
match l with

[] -> ([], []) build the empty pair
| (k, v)::more -> we have at least one key-value pair

match mklists more with make the rest
(ks, vs) -> (k :: ks, v :: vs) and attach k and v

Answers to Questions 151

Here’s a sample evaluation (we cannot really show it in the conventional way, so you must work through
it whilst looking at the function definition):

mklists [(1, 2); (3, 4); (5, 6)]

=⇒ mklists [(3, 4); (5, 6)]

=⇒ mklists [(5, 6)]

=⇒ mklists []

=⇒ ([], [])

=⇒ ([5], [6])

=⇒ ([3; 5], [4; 6])

=⇒ ([1; 3; 5], [2; 4; 6])

Since the inner pattern match has only one form, and is complete, we can use let instead:

mklists : (α × β) list → α list × β list

let rec mklists l =
match l with
[] -> ([], []) build the empty pair

| (k, v)::more -> we have at least one key-value pair
let (ks, vs) = mklists more in make the rest

(k :: ks, v :: vs) and attach k and v

5
We can use our member function which determines whether an element is a member of a list, building up a
list of the keys we have already seen, and adding to the result list of key-value pairs only those with new
keys.

dictionary_of_pairs_inner : α list → (α × β) list → (α × β) list
dictionary_of_pairs : (α × β) list → (α × β) list

let rec dictionary_of_pairs_inner keys_seen l =
match l with

[] -> []
| (k, v)::t ->

if member k keys_seen
then dictionary_of_pairs_inner keys_seen t
else (k, v) :: dictionary_of_pairs_inner (k :: keys_seen) t

let dictionary_of_pairs l =
dictionary_of_pairs_inner [] l

How long does this take to run? Consider how long member takes.

152 Answers to Questions

6
We pattern match on the first list – if it is empty, the result is simply b. Otherwise, we add the first element
of the first list to the union of the rest of its elements and the second list.

union : (α × β) list → (α × β) list → (α × β) list

let rec union a b =
match a with

[] -> b
| (k, v)::t -> add k v (union t b)

We can verify that the elements of dictionary a have precedence over the elements of dictionary b by
noting that add replaces a value if the key already exists.

Chapter 9 (More with Functions)

1
The function g a b c has type α→ β→ γ→ δ which can also be written α→ (β→ (γ→ δ)). Thus, it takes
an argument of type α and returns a function of type β→ (γ→ δ) which, when you give it an argument of
type β returns a function of type γ→ δ which, when you give it an argument of type γ returns something
of type δ. And so, we can apply just one or two arguments to the function g (which is called partial
application), or apply all three at once. When we write let g a b c = ... this is just shorthand for let g
= fun a -> fun b -> fun c -> ...

2
The type of member is α → α list → bool, so if we partially apply the first argument, the type of member
x must be α list → bool. We can use the partially-applied member function and map to produce a list of
boolean values, one for each list in the argument, indicating whether or not that list contains the element.
Then, we can use member again to make sure there are no false booleans in the list.

member_all : α → α list list → bool

let member_all x ls =
let booleans = map (member x) ls in

not (member false booleans)

We could also write:

member_all : α → α list list → bool

let member_all x ls =
not (member false (map (member x) ls))

Answers to Questions 153

Which do you think is clearer? Why do we check for the absence of false rather than the presence of
true?

3
The function (/) 2 resulting from the partial application of the / operator is the function which divides
two by a given number, not the function which divides a given number by two. We can define a reverse
divide function. . .

let rdiv x y = y / x

. . . which, when partially applied, does what we want.

4
The function map has type (α → β) → α list → β list. The function mapl we wrote has type (α → β) →
α list list → β list list. So the function mapll will have type (α → β) → α list list list → β list list list. It
may be defined thus:

mapll : (α → β) → α list list list → β list list list

let mapll f l = map (map (map f)) l

But, as discussed, we may remove the ls too:

mapll : (α → β) → α list list list → β list list list

let mapll f = map (map (map f))

It is not possible to write a function which would map a function f over a list, or list of lists, or list of
lists of lists depending upon its argument, because every function in OCaml must have a single type. If a
function could map f over an α list list it must inspect its argument enough to know it is a list of lists,
thus it could not be used on a β list unless β = α list.

5
We can write a function to truncate a single list using our take function, being careful to deal with the
case where there is not enough to take, and then use this and map to build truncate itself.

truncate_l : int → α list → α list
truncate : int → α list list → α list list

let truncate_l n l =
if length l >= n then take n l else l

let truncate n ll =
map (truncate_l n) ll

154 Answers to Questions

Here we have used partial application of truncate to build a suitable function for map. Note that we
could use exception handling instead of calling length, saving time:

truncate_l : int → α list → α list
truncate : int → α list list → α list list

let truncate_l n l =
try take n l with Invalid_argument "take" -> l

let truncate n ll =
map (truncate_l n) ll

You might, however, reflect on whether or not this is good style.

6
First, define a function which takes the given number and a list, returning the first element (or the number
if none). We can then build the main function, using partial application to make a suitable function to give
to map:

firstelt : α → α list → α
firstelts : α → α list list → α list

let firstelt n l =
match l with [] -> n | h::_ -> h

let firstelts n l =
map (firstelt n) l

Chapter 10 (New Kinds of Data)

1
We need two constructors – one for squares, which needs just a single integer (the length of a side), and
one for rectangles which needs two integers (the width and height, in that order):

type rect =
Square of int

| Rectangle of int * int

The name of our new type is rect. A rect is either a Square or a Rectangle. For example,

Answers to Questions 155

s : rect
r : rect

let s = Square 7

let r = Rectangle (5, 2) width 5, height 2

2
We pattern match on the argument:

area : rect → int

let area r =
match r with

Square s -> s * s
| Rectangle (w, h) -> w * h

3
This will be a function of type rect → rect. Squares remain unaltered, but if we have a rectangle with a
bigger width than height, we rotate it by ninety degrees.

rotate : rect → rect

let rect r =
match r with

Rectangle (w, h) ->
if w > h then Rectangle (h, w) else r

| Square _ -> r

4
We will use map to perform our rotation on any rects in the argument list which need it. We will then use
the sorting function from the previous chapter which takes a custom comparison function so as to just
compare the widths.

156 Answers to Questions

width_of_rect : rect → int
rect_compare : rect → rect → bool
pack : rect list → rect list

let width_of_rect r =
match r with
Square s -> s

| Rectangle (w, _) -> w

let rect_compare a b =
width_of_rect a < width_of_rect b

let pack rects =
sort rect_compare (map rotate rects)

For example, packing the list of rects

[Square 6; Rectangle (4, 3); Rectangle (5, 6); Square 2]

will give

[Square 2; Rectangle (3, 4); Rectangle (5, 6); Square 6]

5
We follow the same pattern as for the list type, being careful to deal with exceptional circumstances:

take : int → α sequence → α sequence
drop : int → α sequence → α sequence
map : (α → β) → α sequence → β sequence

let rec take n l =
if n = 0 then Nil else

match l with
Nil -> raise (Invalid_argument "take")

| Cons (h, t) -> Cons (h, take (n - 1) t)

let rec drop n l =
if n = 0 then l else

match l with
Nil -> raise (Invalid_argument "drop")

| Cons (_, l) -> drop (n - 1) l

let rec map f l =
match l with

Nil -> Nil
| Cons (h, t) -> Cons (f h, map f t)

Answers to Questions 157

6
We can use our power function from earlier:

type expr =
Num of int

| Add of expr * expr
| Subtract of expr * expr
| Multiply of expr * expr
| Divide of expr * expr
| Power of expr * expr

evaluate : expr → int

let rec evaluate e =
match e with

Num x -> x
| Add (e, e') -> evaluate e + evaluate e'
| Subtract (e, e') -> evaluate e - evaluate e'
| Multiply (e, e') -> evaluate e * evaluate e'
| Divide (e, e') -> evaluate e / evaluate e'
| Power (e, e') -> power (evaluate e) (evaluate e')

7
We can just wrap up the previous function:

evaluate_opt : expr → int option

let evaluate_opt e =
try Some (evaluate e) with Division_by_zero -> None

Chapter 11 (Growing Trees)

1
Our function will have type α → α tree → bool. It takes a element to look for, a tree holding that kind of
element, and returns true if the element is found, or false otherwise.

member_tree : α → α tree → bool

let rec member_tree x tr =
match tr with

Lf -> false
| Br (y, l, r) -> x = y || member_tree x l || member_tree x r

158 Answers to Questions

Note that we have placed the test x = y first of the three to ensure earliest termination upon finding an
appropriate element.

2
Our function will have type α tree → α tree. A leaf flips to a leaf. A branch has its left and right swapped,
and we must recursively flip its left and right sub-trees too.

flip_tree : α tree → α tree

let rec flip_tree tr =
match tr with

Lf -> Lf
| Br (x, l, r) -> Br (x, flip_tree r, flip_tree l)

3
We can check each part of both trees together. Leaves are considered equal, branches are equal if their left
and right sub-trees are equal.

equal_shape : α tree → β tree → bool

let rec equal_shape tr tr2 =
match tr, tr2 with

Lf, Lf ->
true

| Br (_, l, r), Br (_, l2, r2) ->
equal_shape l l2 && equal_shape r r2

| _, _ ->
false

4
We can use the tree insertion operation repeatedly:

tree_of_list : (α × β) list → (α × β) tree

let rec tree_of_list l =
match l with
[] -> Lf

| (k, v)::t -> insert (tree_of_list t) k v

There will be no key clashes, because the argument should already be a dictionary. If it is not, earlier keys
are preferred since insert replaces existing keys.

Answers to Questions 159

5
We can make list dictionaries from both tree dictionaries, append them, and build a new tree from the
resultant list.

tree_union : (α × β) tree → (α × β) tree → (α × β) tree

let tree_union t t' =
tree_of_list (list_of_tree t @ list_of_tree t')

The combined list may not be a dictionary (because it may have repeated keys), but tree_of_list will
prefer keys encountered earlier. So, we put entries from t' after those from t.

6
We will use a list for the sub-trees of each branch, with the empty list signifying there are no more i.e. that
this is the bottom of the tree. Thus, we only need a single constructor.

type 'a mtree = Branch of 'a * 'a mtree list

So, now we can define size, total, and map.

size : α mtree → int
total : α mtree → int
map_mtree : (α → β) → α mtree → β mtree

let rec size tr =
match tr with

Branch (e, l) -> 1 + sum (map size l)

let rec total tr =
match tr with

Branch (e, l) -> e + sum (map total l)

let rec map_mtree f tr =
match tr with

Branch (e, l) -> Branch (f e, map (map_mtree f) l)

In fact, when there is only one pattern to match, we can put it directly in place of the function’s argument,
simplifying these definitions:

160 Answers to Questions

size : α mtree → int
total : α mtree → int
map_mtree : (α → β) → α mtree → β mtree

let rec size (Branch (e, l)) =
1 + sum (map size l)

let rec total (Branch (e, l)) =
e + sum (map total l)

let rec map_mtree f (Branch (e, l)) =
Branch (f e, map (map_mtree f) l)

Chapter 12 (In and Out)

1
A first attempt might be:

print_integers : int list → unit

let print_integers l =
print_string "[";
iter (fun i -> print_int i; print_string "; ") l;
print_string "]"

However, there are two problems:

OCaml

[1; 2; 3];;
- : int list = [1; 2; 3]
print_integers [1; 2; 3];;
[1; 2; 3;]- : unit = ()

There is an extra space after the last element, and a semicolon too. We can fix this, at the cost of a longer
program:

Answers to Questions 161

print_integers_inner : int list → unit
print_integers : int list → unit

let rec print_integers_inner l =
match l with

[] -> ()
| [i] -> print_int i
| h::t -> print_int h; print_string "; "; print_integers_inner t

let print_integers l =
print_string "[";
print_integers_inner l;
print_string "]"

Now, the result is correct:

OCaml

[1; 2; 3];;
- : int list = [1; 2; 3]
print_integers [1; 2; 3];;
[1; 2; 3]- : unit = ()

2
We must deal with the exception raised when read_int attempts to read something which is not an
integer, as before. When that exception is caught, we try again, by recursively calling ourselves. The
function ends when three integers are input correctly, returning them as a tuple.

read_three : unit → int × int × int

let rec read_three () =
try

print_string "Type three integers, pressing Enter after each";
print_newline ();
let x = read_int () in
let y = read_int () in

let z = read_int () in
(x, y, z)

with
Failure "int_of_string" ->

print_string "Failed to read integers; please try again";
print_newline ();
read_three ()

You may wonder why we used nested let ... in structures rather than just writing (read_int (),
read_int (), read_int ()) – the evaluation order of a tuple is not specified and OCaml is free to do
what it wants.

162 Answers to Questions

3
We ask the user how many dictionary entries will be entered, eliminating the need for a special “I have
finished” code. First, a function to read a given number of integer–string pairs, dealing with the usual
problem of malformed integers:

read_dict_number : int → (int × string) list

let rec read_dict_number n =
if n = 0 then [] else
try

let i = read_int () in
let name = read_line () in
(i, name) :: read_dict_number (n - 1)

with
Failure "int_of_string" ->

print_string "This is not a valid integer."
print_newline ();
print_string "Please enter integer and name again."
print_newline ();
read_dict_number n

And now, asking the user how many entries there will be, and calling our first function:

read_dict : unit → (int × string) list

exception BadNumber

let rec read_dict () =
print_string "How many dictionary entries to input?";
print_newline ();
try

let n = read_int () in
if n < 0 then raise BadNumber else read_dict_number n

with
Failure "int_of_string" ->

print_string "Not a number. Try again";
print_newline ();
read_dict ()

| BadNumber ->
print_string "Number is negative. Try again";
print_newline ();
read_dict ()

Notice that we defined, raised, and handled our own exception BadNumber to deal with the user asking to
read a negative number of dictionary entries – this would cause read_dict_number to fail to return.

Answers to Questions 163

4
If we write a function to build the list of integers from 1 to n (or the empty list if n is zero):

numlist : int → int list

let rec numlist n =
match n with

0 -> []
| _ -> numlist (n - 1) @ [n]

We can then write a function to output a table of a given size to an output channel.

write_table_channel : in_channel → int → unit

let write_table_channel ch n =
iter

(fun x ->
iter

(fun i ->
output_string ch (string_of_int i);
output_string ch "\t")

(map ((*) x) (numlist n));
output_string ch "\n")

(numlist n)

Look at this carefully. We are using nested calls to iter to build the two-dimensional table from one-
dimensional lists. Can you separate this into more than one function? Which approach do you think is
more readable?

We can test write_table_channel most easily by using the built-in output channel stdout which
just writes to the screen:

OCaml

write_table_channel stdout 5;;
1 2 3 4 5
2 4 6 8 10
3 6 9 12 15
4 8 12 16 20
5 10 15 20 25
- : unit = ()

Now we just need to wrap it in a function to open an output file, write the table, and close the output,
dealing with any errors which may arise.

164 Answers to Questions

table : string → int → unit

exception FileProblem

let table filename n =
if n < 0 then raise (Invalid_argument "table") else
try

let ch = open_out filename in
write_table_channel ch n;
close_out ch

with
_ -> raise FileProblem

In addition to raising Invalid_argument in the case of a negative number, we handle all possible excep-
tions to do with opening, writing to, and closing the file, re-raising them as our own, predefined one. Is
this good style?

5
We write a simple function to count the lines in a channel by taking a line, ignoring it, and adding one
to the result of taking another line; our recursion ends when an End_of_file exception is raised – it is
caught and 0 ends the summation.

The main function countlines just opens the file, calls the first function, and closes the file. Any
errors are caught and re-raised using the built-in Failure exception.

countlines_channel : in_channel → int
countlines : string → int

let rec countlines_channel ch =
try
let _ = input_line ch in

1 + countlines_channel ch
with
End_of_file -> 0

let countlines file =
try

let ch = open_in file in
let result = countlines_channel ch in
close_in ch;
result

with
_ -> raise (Failure "countlines")

6
As usual, let us write a function to deal with channels, and then deal with opening and closing files
afterward. Our function takes an input channel and an output channel, adds the line read from the input

Answers to Questions 165

to the output, follows it with a newline character, and continues. It only ends when the End_of_file
exception is raised inside input_line and caught.

copy_file_ch : in_channel → out_channel → unit

let rec copy_file_ch from_ch to_ch =
try

output_string to_ch (input_line from_ch);
output_string to_ch "\n";
copy_file_ch from_ch to_ch

with
End_of_file -> ()

Now we wrap it up, remembering to open and close both files and deal with the many different errors
which might occur.

copy_file : string → string → unit

exception CopyFailed

let copy_file from_name to_name =
try

let from_ch = open_in from_name in
let to_ch = open_out to_name in
copy_file_ch from_ch to_ch;
close_in from_ch;
close_out to_ch

with
_ -> raise CopyFailed

Chapter 13 (Putting Things in Boxes)

1
Two references, x and y, of type int ref have been created. Their initial values are 1 and 2. Their final
values are 2 and 4. The type of the expression is int because this is the type of !x + !y, and the result is 6.

2
The expression [ref 5; ref 5] is of type int ref list. It contains two references each containing the integer
5. Changing the contents of one reference will not change the contents of the other. The expression let x
= ref 5 in [x; x] is also of type int ref list and also contains two references to the integer 5. However,
altering one will alter the other:

OCaml

166 Answers to Questions

let r = let x = ref 5 in [x; x];;
val r : int ref list = [{contents = 5}; {contents = 5}]
match r with h::_ -> h := 6;;
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
[]
- : unit = ()
r;;
- : int ref list = [{contents = 6}; {contents = 6}]

3
We can write a function forloop which takes a function of type int → α (where alpha would normally be
unit), together with the start and end numbers:

forloop : (int → α) → int → int → unit

let rec forloop f n m =
if n <= m then

begin
f n;
forloop f (n + 1) m

end

For example:

OCaml

forloop print_int 2 10;;
2345678910- : unit = ()
forloop print_int 2 2;;
2- : unit = ()

4
[|1; 2; 3|] : int array

[|true; false; true|] : bool array

[|[|1|]|] : (int array) array which is int array array

[|[1; 2; 3]; [4; 5; 6]|] : int list array

[|1; 2; 3|].(2) : int, has value 2

[|1; 2; 3|].(2) <- 4 : unit, updates the array to [|1; 2; 4|]

5
We use a for construct:

Answers to Questions 167

array_sum : int array → int

let array_sum a =
let sum = ref 0 in

for x = 0 to Array.length a - 1 do
sum := !sum + a.(x)

done;
!sum

Note that this works for the empty array, because a for construct where the second number is less than
the first never executes its expression.

6
Since we wish to reverse the array in place, our function will have type α array → unit. Our method is to
proceed from the first element to the half-way point, swapping elements from either end of the array. If
the array has odd length, the middle element will not be altered.

array_rev : α array → unit

let array_rev a =
if a <> [||] then

for x = 0 to Array.length a / 2 do
let t = a.(x) in
a.(x) <- a.(Array.length a - 1 - x);
a.(Array.length a - 1 - x) <- t

done

Note that we must check for the case where the array is empty; otherwise there would be an invalid
attempt to access element zero inside the for loop.

7
We will represent the int array array as an array of columns so that a.(x).(y) is the element in column x
and row y.

168 Answers to Questions

table : int → int array array

let table n =
let a = Array.make n [||] in

for x = 0 to n - 1 do
a.(x) <- Array.make n 0

done;
for y = 0 to n - 1 do
for x = 0 to n - 1 do

a.(x).(y) <- (x + 1) * (y + 1)
done

done;
a

Note that the result is correct for table 0.

8
The difference between the codes for 'a' and 'A', or 'z' and 'Z' is 32, so we add or subtract as
appropriate. Codes not in those ranges are unaltered.

uppercase : char → char
lowercase : char → char

let uppercase x =
if int_of_char x >= 97 && int_of_char x <= 122

then char_of_int (int_of_char x - 32)
else x

let lowercase x =
if int_of_char x >= 65 && int_of_char x <= 90

then char_of_int (int_of_char x + 32)
else x

9
Periods, exclamation marks and question marks may appear in multiples, leading to a wrong answer.
The number of characters does not include newlines. It is not clear how quotations would be handled.
Counting the words by counting spaces is inaccurate – a line with ten words will count only nine.

Chapter 14 (The Other Numbers)

1
We calculate the ceiling and floor, and return the closer one, being careful to make sure that a point equally
far from the ceiling and floor is rounded up.

Answers to Questions 169

round : float → float

let round x =
let c = ceil x in

let f = floor x in
if c -. x <= x -. f then c else f

The behaviour with regard to values such as infinity and nan is fine, since it always returns the result of
either floor or ceil.

2
The function returns another point, and is simple arithmetic.

between : float × float → float × float → float × float

let between (x, y) (x’, y’) =
((x +. x’) /. 2., (y +. y’) /. 2.)

3
The whole part is calculated using the built-in floor function. We return a tuple, the first number being
the whole part, the second being the original number minus the whole part. In the case of a negative
number, we must be careful – floor always rounds downward, not toward zero!

parts : float → float × float

let rec parts x =
if x < 0. then

let a, b = parts (-. x) in
(-. a, b)

else
(floor x, x -. floor x)

Notice that we are using the unary operator -. to make the number positive.

4
We need to determine at which column the asterisk will be printed. It is important to make sure that the
range 0 . . . 1 is split into fifty equal sized parts, which requires some careful thought. Then, we just print
enough spaces to pad the line, add the asterisk, and a newline character.

170 Answers to Questions

star : float → unit

let star x =
let i = int_of_float (floor (x *. 50.)) in
let i’ = if i = 50 then 49 else i in

for x = 1 to i’ - 1 do print_char ’ ’ done;
print_char ’*’;
print_newline ()

5
We use a reference to hold the current value, starting at the beginning of the range, and then loop until we
are outside the range.

plot : (float → float) → float → float → float → unit

let plot f a b dy =
let pos = ref a in
while !pos <= b do
star (f !pos);
pos := !pos +. dy

done

No allowance has been made here for bad arguments (for example, b smaller than a). Can you extend our
program to move the zero-point to the middle of the screen, so that the sine function can be graphed even
when its result is less than zero?

Chapter 15 (The OCaml Standard Library)

1
A non-tail-recursive one is simple:

concat : α list list → α list

let rec concat l =
match l with
[] -> []

| h::t -> h @ concat t

To make a tail-recursive one, we can use an accumulator, reversing each list as we append it, and reversing
the result. List.rev is tail-recursive already.

Answers to Questions 171

concat_tail : α list → α list list → α list
concat : α list list → α list

let rec concat_tail a l =
match l with

[] -> List.rev a
| h::t -> concat_tail (List.rev h @ a) t

let concat l =
concat_tail [] l

2
We can use List.mem, partially applied, to map over the list of lists. We then make sure that false is not
in the resultant list, again with List.mem.

all_contain_true : bool list list → bool

let all_contain_true l =
not (List.mem false (List.map (List.mem true) l))

3
The String.iter function calls a user-supplied function of type char → unit on each character of the
string. We can use this to increment a counter when an exclamation mark is found.

count_exclamations : string → int

let count_exclamations s =
let n = ref 0 in

String.iter (function '!' -> n := !n + 1 | _ -> ()) s;
!n

The contents of the counter is then the result of the function.

4
We can use the String.map function, which takes a user-supplied function of type char → char and
returns a new string, where each character is the result of the mapping function on the character in the
same place in the old string.

calm : string → string

let calm =
String.map (function '!' -> '.' | x -> x)

172 Answers to Questions

Notice that we have taken advantage of partial application to erase the last argument as usual.

5
Looking at the documentation for the String module we find the following:

val concat : string -> string list -> string

String.concat sep sl concatenates the list of strings sl, inserting the sepa-
rator string sep between each.

So, by using the empty string as a separator, we have what we want:

concat: string list → string

let concat =
String.concat ""

6
We can use the functions create, add_string, and contents from the Buffer module together with the
usual list iterator List.iter:

concat : string list → string

let concat ss =
let b = Buffer.create 100 in
List.iter (Buffer.add_string b) ss;
Buffer.contents b

The initial size of the buffer, 100, is arbitrary.

7
We repeatedly check if the string we are looking for is right at the beginning of the string to be searched. If
not, we chop one character off the string to be searched, and try again. Every time we find a match, we
increment a counter.

Answers to Questions 173

occurrences : string → string → int

let occurrences ss s = occurrences of ss in s
if ss = "" then 0 else defined as zero

let num = ref 0 in occurrences found so far
let str = ref s in current string
while

String.length ss <= String.length !str && !str <> ""
do

if String.sub !str 0 (String.length ss) = ss then
num := !num + 1;

str := String.sub !str 1 (String.length !str - 1)
done;
!num

You might consider that writing this function with lists of characters rather than strings would be easier.
Unfortunately, it would be slow, and these kinds of searching tasks are often required to be very fast.

Chapter 16 (Building Bigger Programs)

1
First, we extend the Textstat module to allow frequencies to be counted and expose it through the
interface, shown in Figures 16.6 and 16.7. Then the main program is as shown in Figure 16.8.

2
We can write two little functions – one to read all the lines from a file, and one to write them. The main
function, then, reads the command line to find the input and output file names, reads the lines from the
input, reverses the list of lines, and writes them out. If a problem occurs, the exception is printed out. If
the command line is badly formed, we print a usage message and exit. This is shown in Figure 16.9.

Note that there is a problem if the file has no final newline – it will end up with one. How might you
solve that?

3
We can simply do something (or nothing) a huge number of times using a for loop.

(* A program which takes sufficiently long to run that we can distinguish
between the ocamlc and ocamlopt compilers *)

for x = 1 to 10000000 do
()

done

On many systems, typing time followed by a space and the usual command will print out on the screen
how long the program took to run. For example, on the author’s computer:

174 Answers to Questions

type stats

val lines : stats -> int

val characters : stats -> int

val words : stats -> int

val sentences : stats -> int

val frequency : stats -> char -> int

val stats_from_file : string -> stats

Figure 16.6: textstat.mli

$ ocamlc bigloop.ml -o bigloop
$ time ./bigloop

real 0m1.896s
user 0m1.885s
sys 0m0.005s

$ ocamlopt bigloop.ml -o bigloop
$ time ./bigloop

real 0m0.022s
user 0m0.014s
sys 0m0.003s

You can see that, when compiled with ocamlc, it takes 1.9s to run, but when compiled with ocamlopt just
0.022s.

4
We can get all the lines in the file using our getlines function from question two. The main function
simply calls string_in_line on each line, printing it if true is returned.

The interesting function is string_in_line. To see if term is in line we start at position 0. The
condition for the term having been found is a combination of boolean expressions. The first ensures that
we are not so far through the string that the expression could not possibly fit at the current position. The
second checks to see if the term is found at the current position by using the function String.sub from
the OCaml Standard Library. If not, we carry on. This is illustrated in Figure 16.10.

Answers to Questions 175

(* Text statistics *)
type stats = int * int * int * int * int array

(* Utility functions to retrieve parts of a stats value *)
let lines (l, _, _, _, _) = l

let characters (_, c, _, _, _) = c

let words (_, _, w, _, _) = w

let sentences (_, _, _, s, _) = s

let frequency (_, _, _, _, h) x = h.(int_of_char x)

(* Read statistics from a channel *)
let stats_from_channel in_channel =

let lines = ref 0 in
let characters = ref 0 in
let words = ref 0 in
let sentences = ref 0 in
let histogram = Array.make 256 0 in

try
while true do
let line = input_line in_channel in
lines := !lines + 1;
characters := !characters + String.length line;
String.iter

(fun c ->
match c with
'.' | '?' | '!' -> sentences := !sentences + 1

| ' ' -> words := !words + 1
| _ -> ())

line;
String.iter

(fun c ->
let i = int_of_char c in

histogram.(i) <- histogram.(i) + 1)
line

done;
(0, 0, 0, 0, [||]) (* Just to make the type agree *)

with
End_of_file -> (!lines, !characters, !words, !sentences, histogram)

(* Read statistics, given a filename. Exceptions are not handled *)
let stats_from_file filename =

let channel = open_in filename in
let result = stats_from_channel channel in

close_in channel;
result

Figure 16.7: textstat.ml

176 Answers to Questions

let print_histogram stats =
print_string "Character frequencies:\n";
for x = 0 to 255 do

let freq = Textstat.frequency stats (char_of_int x) in
if freq > 0 then

begin
print_string "For character ’";
print_char (char_of_int x);
print_string "’ (character number ";
print_int x;
print_string ") the count is ";
print_int freq;
print_string ".\n"
end

done
in
try

begin match Sys.argv with
[|_; filename|] ->
let stats = Textstat.stats_from_file filename in

print_string "Words: ";
print_int (Textstat.words stats);
print_newline ();
print_string "Characters: ";
print_int (Textstat.characters stats);
print_newline ();
print_string "Sentences: ";
print_int (Textstat.sentences stats);
print_newline ();
print_string "Lines: ";
print_int (Textstat.lines stats);
print_newline ();
print_histogram stats

| _ ->
print_string "Usage: stats <filename>\n"

end
with

e ->
print_string "An error occurred: ";
print_string (Printexc.to_string e);
print_newline ();
exit 1

Figure 16.8: stats.ml

Answers to Questions 177

(* Reverse the lines in a file *)

let putlines lines filename =
let channel = open_out filename in
List.iter
(fun s ->

output_string channel s;
output_char channel ’\n’)

lines;
close_out channel

let getlines filename =
let channel = open_in filename in

let lines = ref [] in
try

while true do
lines := input_line channel :: !lines

done;
[]

with
End_of_file ->

close_in channel;
List.rev !lines

let _ =
match Sys.argv with

[|_; infile; outfile|] ->
begin

try
let lines = List.rev (getlines infile) in

putlines lines outfile
with

e ->
print_string "There was an error. Details follow:\n";
print_string (Printexc.to_string e);
print_newline ();
exit 1

end
| _ ->

print_string "Usage: reverse input_filename output_filename\n";
exit 1

Figure 16.9: reverse.ml

178 Answers to Questions

let rec string_in_line term line pos =
pos + String.length term <= String.length line

&&
(String.sub line pos (String.length term) = term
|| string_in_line term line (pos + 1))

let getlines filename =
let channel = open_in filename in
let lines = ref [] in
try

while true do
lines := input_line channel :: !lines

done;
[]

with
End_of_file ->
close_in channel;
List.rev !lines

let _ =
match Sys.argv with
[|_; searchterm; filename|] ->

begin
try

List.iter
(fun line ->

if string_in_line searchterm line 0 then
begin

print_string line;
print_newline ()

end)
(getlines filename)

with
e ->
print_string "An error occurred:\n";
print_string (Printexc.to_string e);
print_newline ()

end
| _ ->
print_string "Usage: search search_term filename\n"

Figure 16.10: search.ml

Hints for Questions

Chapter 1
Starting Off

1
Try to work these out on paper, and then check by
typing them in. Remember that the type of an ex-
pression is the type of the value it will evaluate to.
Can you show the steps of evaluation for each ex-
pression?

2
Type each expression in. What number does each
evaluate to? Can you work out which operator (mod
or +) is being calculated first?

3
Type it in. What does OCaml print? What is the
evaluation order?

7
What if a value of 2 appeared? How might we inter-
pret it?

Chapter 2
Names and Functions

1
The function takes one integer, and returns that in-
teger multiplied by ten. So what must its type be?

2

What does the function take as arguments? What
is the type of its result? So what is the whole type?
You can use the <> and && operators here.

3

This will be a recursive function, so remember to
use let rec. What is the sum of all the integers
from 1 . . . 1? Perhaps this is a good base case.

4

This will be a recursive function. What happens
when you raise a number to the power 0? What
about the power 1? What about a higher power?

5

Can you define this in terms of the isvowel function
we have already written?

6

Try adding parentheses to the expression in a way
which does not change its meaning. Does this make
it easier to understand?

7

When does it not terminate? Can you add a check
to see when it might happen, and return 0 instead?

179

180 Hints for Questions

Chapter 3
Case by Case

1
We are pattern matching on a boolean value, so there
are just two cases: true and false.

2
Convert the if ... then ... else structure of
the sum function from the previous chapter into a
pattern matching structure.

3
You will need three cases as before – when the power
is 0, 1 or greater than 1 – but now in the form of a
pattern match.

5
Consider where parentheses might be added with-
out altering the expression.

6
There will be two cases in each function – the special
range pattern x..y, and _ for any other character.

Chapter 4
Making Lists

1
Consider three cases: (1) the argument list is empty,
(2) the argument list has one element, (3) the argu-
ment list has more than one element a::b::t. In
the last case, which element do we need to miss out?

2
The function will have type bool list→ int. Consider
the empty list, the list with true as its head, and the
list with false as its head. Count one for each true
and zero for each false.

3

The function to make a palindrome is trivial; to de-
tect if a list is a palindrome, consider the definition
of a palindrome – a list which equals its own reverse.

4

Consider the cases (1) the empty list, (2) the list
with one element, and (3) the list with more than
one element. For the tail recursive version, use an
accumulating argument.

5

Can any element exist in the empty list? If the list is
not empty, it must have a head and a tail. What is
the answer if the element we are looking for is equal
to the head? What do we do if it is not?

6

The empty list is already a set. If we have a head
and a tail, what does it tell us to find out if the head
exists within the tail?

7

Consider in which order the @ operators are evalu-
ated in the reverse function. How long does each
append take? How many are there?

Chapter 5
Sorting Things

1

Consider adding another let before let left and
let right.

2

Consider the situations in which take and drop can
fail, and what arguments msort gives them at each
recursion.

Hints for Questions 181

3

This is a simple change – consider the comparison
operator itself.

4

What will the type of the function be? Lists of length
zero and one are already sorted – so these will be
the base cases. What do we do when there is more
than one element?

6

You can put one let rec construct inside another.

Chapter 6
Functions upon Functions upon
Functions

1

The function calm is simple recursion on lists. There
are three cases – the empty list, a list beginning with
'!' and a list beginning with any other character.
In the second part of the question, write a function
calm_char which processes a single character. You
can then use map to define a new version of calm.

2

This is the same process as Question 1.

3

Look back at the section on anonymous functions.
How can clip be expressed as an anonymous func-
tion? So, how can we use it with map?

4

We want a function of the form let rec apply f n
x = . . . which applies f to x a total of n times. What
is the base case? What do we do in that case? What
otherwise?

5

You will need to add the extra function as an argu-
ment to both insert and sort and use it in place of
the <= operator in insert.

6

There are three possibilities: the argument list is
empty, true is returned when its head is given to
the function f, or false is returned when its head
is given to the function f.

7

If the input list is empty, the result is trivially true –
there cannot possibly be any elements for which the
function does not hold. If not, it must hold for the
first one, and for all the others by recursion.

8

You can use map on each α list in the α list list.

Chapter 7
When Things Go Wrong

1

Make sure to consider the case of the empty list,
where there is no smallest positive element, and
also the non-empty list containing entirely zero or
negative numbers.

2

Just put an exception handler around the function
in the previous question.

3

First, write a function to find the number less than
or equal to the square root of its argument. Now,
define a suitable exception, and wrap up your func-
tion in another which, on a bad argument, raises the
exception or otherwise calls your first function.

182 Hints for Questions

4

Use the try . . . with construct to call your function
and handle the exception you defined.

Chapter 8
Looking Things Up

1

The keys in a dictionary are unique – does remem-
bering that fact help you?

2

The type will be the same as for the add function,
but we only replace something if we find it there –
when do we know we will not find it?

3

The function takes a list of keys and a list of values,
and returns a dictionary. So it will have type α list
→ β list → (α × β) list. Try matching on both lists
at once – what are the cases?

4

This function takes a list of pairs and produces a
pair of lists. So its type must be (α × β) list → α
list × β list.

For the base case (the empty dictionary), we can
see that the result should be ([], []). But what to
do in the case we have (k, v) :: more? We must
get names for the two parts of the result of our func-
tion on more, and then cons k and v on to them –
can you think of how to do that?

5

You can keep a list of the keys which have already
been seen, and use the member function to make
sure you do not add to the result list a key-value
pair whose key has already been included.

6

The function will take two dictionaries, and return
another – so you should be able to write down its
type easily.

Try pattern matching on the first list – when it
is empty, the answer is trivial – what about when it
has a head and a tail?

Chapter 9
More with Functions

2

Try building a list of booleans, each representing the
result of member on a list.

3

The / operator differs from the * operator in an
important sense. What is it?

4

The type of map is (α → β) → α list → β list. The
type of mapl is (α → β) → α list list → β list list.
So, what must the type of mapll be? Now, look at
our definition of mapl – how can we extend it to lists
of lists of lists?

5

Use our revised take function to process a single list.
You may then use map with this (partially applied)
function to build the truncate function.

6

Build a function firstelt which, given the number
and a list, returns the first element or that number.
You can then use this function (partially applied) to-
gether with map to build the main firstelts func-
tion.

Hints for Questions 183

Chapter 10
New Kinds of Data

1

The type will have two constructors: one for squares,
requiring only a single integer, and one for rectan-
gles, requiring two: one for the width and one for
the height.

2

The function will have type rect → int. Work by
pattern matching on the two constructors of your
type.

3

Work by pattern matching on your type. What hap-
pens to a square. What to a rectangle?

4

First, we need to rotate the rectangles as needed –
you have already written something for this. Then,
we need to sort them according to width. Can you
use our sort function which takes a custom com-
parison function for this?

5

Look at how we re-wrote length and append for
the sequence type.

6

Add another constructor, and amend evaluate as
necessary.

7

Handle the exception, and return None in that case.

Chapter 11
Growing Trees

1
The type will be α → α tree → bool. That is, it
takes an element to search for, and a tree containing
elements of the same type, and returns true if the
element is found, and false if not. What happens
if the tree is a leaf? What if it is a branch?

2
The function will have type α tree → α tree. What
happens to a leaf? What must happen to a branch
and its sub-trees?

3
If the two trees are both Lf, they have the same
shape. What if they are both branches? What if one
is a branch and the other a leaf or vice versa? For
the second part of the question, consider a devious
way to use map_tree to produce trees of like type.

4
We have already written a function for inserting an
element into an existing tree.

5
Try using list dictionaries as an intermediate rep-
resentation. We already know how to build a tree
from a list.

6
Consider using a list of sub-trees for a branch. How
can we represent a branch which has no sub-trees?

Chapter 12
In and Out

1
You can use the print_string and print_int func-
tions. Be careful about what happens when you

184 Hints for Questions

print the last number.

2
You can use the read_int function to read an
integer from the user. Be sure to give the user
proper instructions, and to deal with the case where
read_int raises an exception (which it will if the
user does not type an integer).

3
One way would be to ask the user how many dictio-
nary entries they intend to type in first. Then we do
not need a special code to signal the end of input.

4
Try writing a function to build a list of integers from
1 to n. Can you use that to build the table and print
it? The iter and/or map functions may come in use-
ful. Deal with a channel in your innermost function
– the opening and closing of the file can be dealt with
elsewhere.

5
The input_line function can be used – how many
times can you call it until End_of_file is raised?

6
We can read lines from the file using input_line
and write using output_string – make sure the
newlines do not get lost! How do we know when
we are done? Write a function to copy a line from
one channel to another – we can deal with opening
and closing the files separately.

Chapter 13
Putting Things in Boxes

1
Consider the initial values of the references, and
then work through how each one is altered by each
part of the expression. What is finally returned as
the result of the expression?

2

Try creating a value for each list in OCaml. Now try
getting the head of the list, which is a reference, and
updating its contents to another integer. What has
happened in each case?

3

Try writing a function forloop which takes a func-
tion to be applied to each number, and the start and
end numbers. It should call the given function on
each number. What should happen when the start
number is larger than the end number?

4

Type them in if you are stuck. Can you work out
why each expression has the type OCaml prints?

5

We want a function of type int array → int. Try a for
loop with a reference to accumulate the sum.

6

Consider swapping elements from opposite ends of
the array – the problem is symmetric.

7

To build an array of arrays, you will need a use
Array.make to build an array of empty arrays. You
can then set each of the elements of the main ar-
ray to a suitably sized array, again created with
Array.make. Once the structure is in place, putting
the numbers in should be simple.

8

What is the difference between the codes for 'a'
and 'A'? What about 'z' and 'Z'?

Hints for Questions 185

Chapter 14
The Other Numbers

1
Consider the built-in functions ceil and floor.

2
This is simple arithmetic. The function will take two
points and return another, so it will have type float
× float → float × float → float × float.

3
Consider the built-in function floor. What should
happen in the case of a negative number?

4
Calculate the column number for the asterisk care-
fully. How can it be printed in the correct column?

5
You will need to call the star function with an ap-
propriate argument at points between the beginning
and end of the range, as determined by the step.

Chapter 15
The OCaml Standard Library

1
You can assume List.rev which is tail-recursive.

2
You might use List.map here, together with
List.mem

3
The String.iter function should help here.

4
Try String.map supplying a suitable function.

5
Consider String.concat.

6
Create a buffer, add all the strings to it in order, and
then return its contents.

7
String.sub is useful here. You can compare strings
with one another for equality, as with any other
type.

Chapter 16
Building Bigger Programs

1
You will need to alter the Textstat module to cal-
culate the histogram and allow it to be accessed
through the module’s interface. Then, alter the main
program to retrieve and print the extra information.

2
You will need functions to read and write the lines.
You can read the required input and output file-
names from Sys.argv. What should we do in case
of an error, e.g. a bad filename?

3
Consider doing something a very large number of
times. You should avoid printing information to the
screen, because the printing speed might dominate,
and the differing computation speeds may be hard
to notice.

4
Start with a function to search for a given string in-
side another. You might find some functions from
the String module in the OCaml Standard Library
to be useful, or you can write it from first principles.
Once this is done, the rest is simple.

Coping with Errors

It is very hard to write even small programs correctly the first time. An unfortunate but inevitable part of
programming is the location and fixing of mistakes. OCaml has a range of messages to help you with this
process.

Here are descriptions of the common messages OCaml prints when a program cannot be accepted or
when running it causes a problem (a so-called “run-time error”). We also describe warnings OCaml prints
to alert the programmer to a program which, though it can be accepted for evaluation, might contain
mistakes.

ERRORS

These are messages printed when an expression could not be accepted for evaluation, due to being
malformed in some way. No evaluation is attempted. You must fix the expression and try again.

Syntax error
This error occurs when OCaml finds that the program text contains things which are not valid words (such
as if, let etc.) or other basic parts of the language, or when they exist in invalid combinations – this is
known as syntax. Check carefully and try again.

OCaml

#1 +;;
Error: syntax error

OCaml has underlined where it thinks the error is. Since this error occurs for a wide range of different
mistakes and problems, the underlining may not pinpoint the exact position of your mistake.

Unbound value . . .
This error occurs when you have mentioned a name which has not been defined (technically “bound to a
value”). This might happen if you have mistyped the name.

OCaml

x + 1;;
Error: Unbound value x

187

188 Coping with Errors

In our example x is not defined, so it has been underlined.

This expression has type . . . but an expression was expected of type . . .

You will see this error very frequently. It occurs when the expression’s syntax is correct (i.e. it is made
up of valid words and constructs), and OCaml has moved on to type-checking the expression prior to
evaluation. If there is a problem with type-checking, OCaml shows you where a mismatch between the
expected and actual type occurred.

OCaml

1 + true;;
Error: This expression has type bool but an expression was expected of type

int

In this example, OCaml is looking for an integer on the right hand side of the + operator, and finds
something of type bool instead.

It is not always as easy to spot the real source of the problem, especially if the function is recursive.
Nevertheless, a careful look at the program will often shine light on the problem – look at each function
and its arguments, and try to find your mistake.

This function is applied to too many arguments

Exactly what it says. The function name is underlined.

OCaml

let f x = x + 1;;
val f : int -> int = <fun>
f x y;;
Error: This function is applied to too many arguments;
maybe you forgot a `;'

The phrase “maybe you forgot a ‘;’ ” applies to imperative programs where accidently missing out a ‘;’
between successive function applications might commonly lead to this error.

Unbound constructor . . .

This occurs when a constructor name is used which is not defined.

OCaml

type t = Roof | Wall | Floor;;
type t = Roof | Wall | Floor
Window;;
Error: Unbound constructor Window

OCaml knows it is a constructor name because it has an initial capital letter.

Coping with Errors 189

The constructor . . . expects . . . argument(s), but is applied here to . . . argu-
ment(s)

This error occurs when the wrong kind of data is given to a constructor for a type. It is just another type
error, but we get a specialised message.

OCaml

type p = A of int | B of bool;;
type p = A of int | B of bool
A;;
Error: The constructor A expects 1 argument(s),

but is applied here to 0 argument(s)

RUN-TIME ERRORS

In any programming language powerful enough to be of use, some errors cannot be detected before
attempting evaluation of an expression (until “run-time”). The exception mechanism is for handling and
recovering from these kinds of problems.

Stack overflow during evaluation (looping recursion?)

This occurs if the function builds up a working expression which is too big. This might occur if the function
is never going to stop because of a programming error, or if the argument is just too big.

OCaml

let rec f x = 1 + f (x + 1);;
val f : int -> int = <fun>
f 0;;
Stack overflow during evaluation (looping recursion?).

Find the cause of the unbounded recursion, and try again. If it is really not a mistake, rewrite the function
to use an accumulating argument (and so, to be tail recursive).

Exception: Match_failure . . .

This occurs when a pattern match cannot find anything to match against. You would have been warned
about this possibility when the program was originally entered. For example, if the following function f
were defined as

let f x = match x with 0 -> 1

then using the function with 1 as an argument would produce:

OCaml

190 Coping with Errors

f 1;;
Exception: Match_failure ("//toplevel//", 1, 10).

In this example, the match failure occurred in the top level (i.e. the interactive OCaml we are using), at
line one, character ten.

Exception: . . .
This is printed if an un-handled exception reaches OCaml.

OCaml

exception Exp of string;;
exception Exp of string
raise (Exp "Failed");;
Exception: Exp "Failed".

This can occur for built-in exceptions like Division_by_Zero or Not_found or ones the user has defined
like Exp above.

WARNINGS

Warnings do not stop an expression being accepted or evaluated. They are printed after an expression is
accepted but before the expression is evaluated. Warnings are for occasions where OCaml is concerned
you may have made a mistake, even though the expression is not actually malformed. You should check
each new warning in a program carefully.

This pattern-matching is not exhaustive
This warning is printed when OCaml has determined that you have missed out one or more cases in a
pattern match. This could result in a Match_failure exception being raised at run-time.

OCaml

let f x = match x with 0 -> 1;;
Warning 8: this pattern-matching is not exhaustive.
Here is an example of a value that is not matched:
1
val f : int -> int = <fun>

Helpfully, it is able to generate an example of something the pattern match does not cover, so this should
give you a hint about what has been missed out. You may ignore the warning if you are sure that, for
other reasons, this case can never occur.

This match case is unused
This occurs when two parts of the pattern match cover the same case. In this situation, the second one
could never be reached, so it is almost certain the programmer has made a mistake.

OCaml

let f x = match x with _ -> 1 | 0 -> 0;;
Warning 11: this match case is unused.
val f : int -> int = <fun>

In this case, the first case matches everything, so the second cannot ever match.

This expression should have type unit
Sometimes when writing imperative programs, we ignore the result of some side-effect-producing function.
However, this can indicate a mistake.

OCaml

f 1; 2;;
Warning 10: this expression should have type unit.
- : int = 2

It is better to use the built-in ignore function in these cases, to avoid this warning:

OCaml

ignore (f 1); 2;;
- : int = 2

The ignore function has type α → unit. It has no side-effect.

Index

!, 99
→, 10
×, 61
*, 2
*., 111
+, 2
+., 111
-, 2
-., 111
->, 19
/, 2
/., 111
::, 25
:=, 99
;, 25, 89
<, 3
<-, 104
<=, 3
<>, 3
=, 3, 9
>, 3
>=, 3
@, 25
#load, 124
#use, 45
&&, 3
||, 3
|, 19

abstraction, 123, 126
accumulator, 27
algorithm, 12
anonymous function, 49
append, 25
argument, 9

accumulating, 27
array, 104
array, 104
ASCII, 105

associativity, 2
atan, 112

begin, 100
binary search tree, 83
binary tree, 81
bool, 2
boolean, 2

case, in a pattern match, 27
ceil, 112
char, 3
character, 3
close_in, 95
close_out, 95
comment, 123
comparison operator, 2
compilation, 124
conditional expression, 19
cons, 25
cos, 112

data structure, 83
dictionary, 61
Division_by_zero, 55
do, 100, 101
done, 100, 101
drop function, 29

element of a list, 25
else, 3
end, 100
End_of_file, 94
Euclid’s algorithm, 12
exception, 55

defining, 55
handling, 56
raising, 56

exception, 55

executable, 124
exit, ix
expression, 1

evaluating, 2

factorial, 11
false, 2
file, 93
float_of_int, 112
float_of_string, 112
floating-point, 111
floor, 112
for, 100
for loop, 101
fun, 49
function, 9

anonymous, 49
from an operator, 50

functional language, 13

handling an exception, 56
head of a list, 25

if, 3
imperative programming,

100
in, 9
in_channel, 93
indentation, 11
insertion sort, 38
int, ix, 1
int_of_float, 112
int_of_string, 95
interface, 126
Invalid_argument, 55

key, in a dictionary, 61
keyboard, 91

length function, 26

193

194 Index

let, 9
let rec, 11
list, 25

reversing, 29
sorting, 37

list, 25
list of lists, 30
log, 112
log10, 112
loop, 101

map function, 48
match, 19
max_int, 5
merge sort, 39
min_int, 5
mod, 2
module, 117, 123

name, 9
not function, 13
Not_found, 57

OCaml, ix
ocamlc, 128
ocamlopt, 128
of, 55
open_in, 95
open_out, 95
operand, 1
operator, 1
option, 74
out_channel, 93
output_char, 95
output_string, 95

pair, 61
partial application, 67
pattern matching, 19
polymorphic types, 26
precedence, 2
print_float, 112
print_int, 95
print_newline, 95
print_string, 95
printing to the screen, 89
program, ix

load from file, 45
programming language, ix
proportional time, 26

raise, 56
raising an exception, 56
read_int, 95
read_line, 95
real number, 111
recursion, over a list, 26
recursive, 11
ref, 99
ref, 99
reference, 99
reversing a list, 29
run-time error, 55

side-effect, 89
sin, 112
software engineering, 123
sorting, 37
sqrt, 112
standard library, 117
string, 83

string, 83
string_of_float, 112
string_of_int, 95
sub-expression, 2
subscript, 104
Sys_error, 95

tail of a list, 25
tail recursive, 28
take function, 29
tan, 112
then, 3
to, 100
tree, 81

binary search, 83
for dictionaries, 83

true, 2
try, 56
tuple, 61
type, 2

constructor, 73
hidden, 126
recursive, 75

type, 73
type variable, 74

unit, 89

val, 126
value, 2
value, in a dictionary, 61

while, 101
with, 19

	Getting Ready
	Starting Off
	Names and Functions
	Note on Notation
	Case by Case
	Making Lists
	Two Different Ways of Thinking
	Sorting Things
	Loading a Program from a File
	Functions upon Functions upon Functions
	When Things Go Wrong
	Looking Things Up
	More with Functions
	New Kinds of Data
	Growing Trees
	In and Out
	Putting Things in Boxes
	The Other Numbers
	The OCaml Standard Library
	Building Bigger Programs
	Answers to Questions
	Hints for Questions
	Coping with Errors
	Index

